

- 23 pages -

Reproducible Builds
Baseline Security Assurance
Threat model and hacking assessment report

v1.0 FINAL, 14 January 2025

Prepared for:
Reproducible Builds

SRL-reproducible-builds_baseline_assurance-report.docx Page 1 of 23

Content

Disclaimer .. 2

Timeline .. 3

1 Executive summary .. 4

1.1 Engagement overview... 4

1.2 Observations and Risk ... 4

1.3 Recommendations .. 4

2 Evolution suggestions .. 5

2.1 Business logic improvement suggestions ... 5

2.2 Secure development improvement suggestions .. 6

2.3 Address currently open security issues ... 6

2.4 Further recommended best practices .. 6

3 Motivation and scope .. 7

4 Methodology ... 9

4.1 Threat modeling and attacks .. 9

4.2 Security design coverage check. ... 12

4.3 Implementation check .. 12

4.4 Remediation support .. 13

5 Findings summary.. 14

5.1 Risk profile ... 14

5.2 Issue summary .. 15

6 Detailed findings ... 16

6.1 S2-1 Undetected modification in ELF binary ... 16

6.2 S2-2 XML parsing via old versions of Pythons xml.minidom is vulnerable to XEE attacks 17

6.3 S2-3 Calls to subprocess.check can lead to crashes of diffoscope 18

6.4 S0-4 CSS argument is vulnerable to XSS injection ... 20

7 Bibliography .. 21

Appendix A: Technical services ... 22

SRL-reproducible-builds_baseline_assurance-report.docx Page 2 of 23

Disclaimer

This report describes the findings and core conclusions derived from the audit carried out by Security
Research Labs within the timeframe and scope detailed in chapter 3.

Please note that this report does not guarantee that all existing security vulnerabilities were
discovered in the codebase exhaustively and that following all evolution suggestions described in
chapter 2 may not ensure all future code to be bug free.

Version: v1.0 FINAL

Prepared For: Reproducible Builds

Date: 14 January 2025

Prepared By: Daniel Schmidt schmidt@srlabs.de

Marc Heuse marc@srlabs.de

Florian Wilkens florian@srlabs.de

mailto:schmidt@srlabs.de
mailto:marc@srlabs.de
mailto:marc@srlabs.de

SRL-reproducible-builds_baseline_assurance-report.docx Page 3 of 23

Timeline

The Reproducible Builds source code security assessment started end of October 2024 and the analysis
took 11 weeks.

Date Event

October 29, 2024 Project Kickoff

December 23, 2024 Report for the baseline security check delivered

January 14, 2025 Final Report delivered (this document)

Table 1: Audit timeline

SRL-reproducible-builds_baseline_assurance-report.docx Page 4 of 23

1 Executive summary

Reproducible Builds is a set of software tools and practices that enable projects to ensure their
software builds are verifiably reproducible. This means that the build process produces a deterministic
output (i.e., build artifacts) from the same source code, given the same build environment. By
achieving reproducibility, projects can confidently verify that the built artifacts have not been
tampered with, enhancing security and trust. Additionally, reproducibility enables more efficient
caching of build artifacts and facilitates reproducing bugs.

1.1 Engagement overview

This report documents the results of the security assurance audit performed by Security Research Labs
on three tools developed by the Reproducible Builds project:

[1] diffoscope
[2] strip-nondeterminism
[3] reprotest

Security Research Labs is a consulting think tank that provides specialized audit services in the security
ecosystem since 2010.

During this study, the Reproducible Builds team provided access to relevant documentation and
effectively supported the assessment. We verified the architecture, concept documentation, and
relevant available source code of the three tools in scope from Reproducible Builds.

This audit focused on assessing the codebase for resilience against hacking and abuse scenarios. Key
areas of scrutiny included the differential report formats, common client web attacks, command
injections, privilege management, data leakage, hiding of modifications in build process and possible
attack vectors to enable denial of service against the build process. The testing approach combined
manual code inspection and static analysis. We prioritized reviewing critical functionalities and
conducting thorough security tests to ensure the robustness of Reproducible Builds’ tools. We
collaborated closely with the Reproducible Builds‘ team, utilizing full access to source code and
documentation to perform a rigorous assessment.

1.2 Observations and Risk

We identified several issues ranging from medium to informational severity. No high or critical issues
were identified during the audit. Reproducible Builds acknowledged all reported issues.

1.3 Recommendations

In addition to mitigating the issues, we recommend integrating comprehensive security testing, such
as fuzz testing and security focused end-to-end tests.

Additionally, we recommend applying an "isolated by default" policy, which prevents users from
accidentally running the Reproducible Builds tools without isolation unless they explicitly choose to
do so.

Furthermore, we recommend more explicit dependency management to avoid unknowing use of
vulnerable dependencies.

Finally, we recommend conducting iterative threat modeling and applying additional secure
development best practices to help identify potential risks early on and ensure the integrity of the
Reproducible Builds tools.

SRL-reproducible-builds_baseline_assurance-report.docx Page 5 of 23

2 Evolution suggestions

We are pleased to report that the Reproducible Builds’ security measures are sufficiently robust and
align with established industry standards. To ensure that Reproducible Builds is secure against further
unknown or yet undiscovered threats, we recommend considering the evolution suggestions and best
practices described in this section.

2.1 Business logic improvement suggestions

Restrict capabilities on the host. The diffoscope tool inherently needs to deal with a high number of
different file formats. This poses a broad attack surface as file format parsing is a common target of
exploitation. The tool reprotest is exposed to similar risks as it directly executes build commands,
which essentially amounts to unrestricted code execution. To reduce these risks, the tools should ´be
restricted in their capabilities on the host system beyond their required permissions. Common
approaches to achieve this are containerization, chrooting, or rewriting the code to explicitly drop
privileges after initialization. While the documentation already recommends isolation as best practice,
the tools currently do not take any steps to verify that this is indeed the case.

We recommend extending diffoscope, reprotest and strip-nondeterminism to perform isolation
detection and refuse operation if no adequate isolation is found. Additionally, an --insecure flag
should be introduced to manually accept the risks of missing isolation in cases where it cannot be
provided. In this mode the tools should still issue a warning to the user highlighting the exploitation
risks. In the long-term, the tools could also be rearchitected to drop capabilities after initialization, for
example, via seccomp. This would reduce the need for external isolation as the attack surface is
reduced in the tools themselves.

Clearly manage and version dependencies. Diffoscope currently specifies only a minimal set of
required dependencies directly in setup.py. This ensures that it can be installed on a large set of
machines which might not have a multitude of optional dependencies installed. However, the optional
dependencies, especially in the comparators extras section, are not clearly advertised in the README
and sometimes offer significant security improvements over the fallback options, for example in the
case of defusedxml over the fallback implementation based on the xml.minidom module from Python
standard library. Additionally, diffoscope does not inform the user once fallback implementations are
used, outside of a dedicated --list-missing-tools argument which does not perform normal
operation and is likely to be missed.

Another dependency-related issue lies in the absence of version specifiers for all dependencies across
the two audited Python tools. Without version restrictions in place, a package installer like pip may
rely on outdated and potentially vulnerable dependencies that were installed in the Python
environment or globally in the past, even though newer and more secure versions are available.
Adding the version specifier shifts some responsibility of dependency management from the end user
to the tool authors and improves the default behavior for non-expert users as the

We recommend (1) specifying minimum version requirements for both required and optional
dependencies across all three tools with regular updates when vulnerabilities are found and fixed
upstream and (2) advertising the optional dependencies, especially for diffoscope, more directly in the
README in a way that mirrors the existing section about optional external tools, while also printing a
message to the user if fallback implementations are used or ideally even dropping potentially insecure
fallback options.

SRL-reproducible-builds_baseline_assurance-report.docx Page 6 of 23

2.2 Secure development improvement suggestions

We recommend further strengthening the security of the Reproducible Builds tools by implementing
the following recommendations:

Perform threat modeling. Threat modeling for all new features and major updates before coding
promotes better code security. This practice allows developers to identify potential security threats
and vulnerabilities early in the design phase and implement appropriate mitigations right from the
start. Including the threat model in the pull request description ensures that the entire team is aware
of the identified risks and the measures taken to address them, promoting a proactive security culture
and enhancing the overall robustness of the codebase. Additionally, it helps the audit team to identify
gaps in the threat model and focus their assessment.

Leverage static analysis tooling. Static analysis tools help detect security flaws in the codebase, thus
improving code security. These tools, such as bandit [4] or safety [5], analyze code without executing
it. They identify vulnerabilities, coding errors, and compliance issues early in the development process.
This proactive approach helps developers address potential security issues before they reach
production, ensuring a more secure and reliable codebase.

Perform dynamic analysis. Developing fuzzing harnesses for different file format comparisons, output
formats and other critical components is essential for identifying security vulnerabilities and business
logic issues. By employing invariants, these fuzzing tests can effectively uncover subtle flaws that
might otherwise go unnoticed. This demonstrates how comprehensive and targeted fuzz testing can
significantly enhance the security and reliability of complex systems.

2.3 Address currently open security issues

We recommend addressing already known security issues once time permits. Even if an open issue
has a limited impact, an attacker might use it as part of their exploitation chain, which may have a
more severe impact on the Reproducible Builds project.

2.4 Further recommended best practices

End-to-end test implementation. Although the in-scope Python tools contain unit tests that largely
cover their respective functionality, they only check the tools’ functionality in isolation and do not
consider the entirety of the reproducibility process: Potential problems in the tools’ interaction can
remain undetected. We recommend implementing end-to-end test cases, e.g., via reproducible or
explicitly non-reproducible dummy packages that explicitly introduce errors in certain steps of the
reproducibility pipeline. These end-to-end tests ensure that the overall process of reproducible builds
works as expected even when failures occur in the interaction between tools.

Additionally, we recommend extending unit tests to provide a stronger focus on security. This includes
testing for crashes in the used third-party tools, edge cases, potential vulnerabilities, and common
attack vectors. Furthermore, tracking of test coverage metrics can help to identify blind spots and
untested code.

Documentation. The documentation occasionally lacks explanations of the internal code architecture.
This complicates understanding the codebase and diverts valuable time from verifying the tool’s
functionality. This is also especially relevant outside of (security) audit contexts, e.g., when new
developers need to be onboarded to the codebase for feature development. To improve the
architecture documentation, establish a practice of updating design documents and code comments
concurrently with any code changes or new features. Incorporating documentation verification into
the code review process can help detect discrepancies early.

SRL-reproducible-builds_baseline_assurance-report.docx Page 7 of 23

3 Motivation and scope

The Reproducible Builds project aims to detect and prevent supply-chain attacks on binary packages
for Linux distributions by offering independently verifiable artifacts that can be used to determine if a
binary package has been tampered with during the build process. This is achieved by (1) pushing
software towards being reproducible, i.e., making it produce bit-by-bit identical copies in identical
build environments and (2) running independent build servers that build distribution packages and
can be used as base for comparison with official upstream packages.

Security Research Labs collaborated with the Reproducible Builds team to create an overview
containing three key software tools in scope and their audit priority. The in-scope components and
their assigned priorities are reflected in table 2. During the audit, we used threat modelling to guide
our efforts on exploring potential security flaws and realistic attack scenarios.

Tool Priority Description

diffoscope [1] High Python application to obtain human-readable diffs
between files or folders supporting many file formats.

strip-nondeterminism [2] Medium Perl program to strip non-deterministic information such
as timestamps from various file and archive formats.

reprotest [3] Low Python application to build source code multiple times in
varying build environments to check reproducibility.

Table 2: Tools from Reproducible Builds that are in scope with audit priority

The three tools were chosen as they represent critical components of the overall reproducibility
process:

▪ diffoscope is a Python application that produces detailed diffs between files or between
directories. In the reproducibility process it is used to detect changes in the build artifacts
introduced by build system variations (e.g., if the package is not properly reproducible). To
enable meaningful diffs and support the developer in addressing potential issues, it parses
various file formats common in software packages such as archives and binary formats. It is also
used outside of Reproducible Builds, e.g., when comparing binary packages of propiertary
software after updates or for context-aware diffs between different versions of pdf documents.

The audit of diffoscope focused on the parts of the codebase that directly interact with the
various supported file formats, as they pose an inherent risk for potential exploitation due to
the complex parsing logic for certain file formats. The relevant classed are located in the
diffoscope.comparators package.

▪ strip-nondeterminism is a Perl script that removes non-deterministic elements from various
kinds of files such as timestamps or ordering differences in archives. This tool is essential for
build pipelines that produce reproducible packages. It eliminates non-deterministic elements
often introduced during post-processing or packaging, rather than during the actual compilation
of the source code. As such, it also supports various formats commonly used in software
packaging similar to diffoscope. The strip-nondeterminisim command is usually called last in a
build pipeline and the resulting package is treated as the final build artifact that is reproducibly
buildable from other machines with the same build environment.

The audit of strip-nondeterminism focused on common Perl best-practices especially related to
file handling and interaction with spawned processes as well as the file format parsing as they
pose the largest risk of exploitation from malformed input files.

SRL-reproducible-builds_baseline_assurance-report.docx Page 8 of 23

▪ reprotest is a Python application that builds a source repository in varying build environments
and compares the resulting packages for differences via diffoscope or another fallback diff tool.
Its main purpose is running on dedicated build servers maintained by the Reproducible Builds
team to offer signed testimonials that a reproducible build was performed. In the future, these
signatures and the respective binary packages can then be compared with the version served by
distribution package managers to verify that those have not been tampared with.

The reprotest audit focused on the parts of the codebase that directly interact with the build
environment (the so-called testbed in the code) as well as security best practices and results of
static analysis tools.

SRL-reproducible-builds_baseline_assurance-report.docx Page 9 of 23

4 Methodology

We applied the following four-step methodology when performing the security assessment for the
Reproducible Builds tools:
(1) threat modeling,
(2) security design coverage checks,
(3) implementation baseline check, and finally
(4) remediation support.

4.1 Threat modeling and attacks

The threat model framework’s goal is to determine specific areas of risk in the Reproducible Builds
tools. Familiarity with these risk areas can provide guidance for the design of the implementation
stack, the actual implementation of the stack, as well as the security testing. This section introduces
how risk is defined and provides an overview of the identified threat scenarios.

The risk level is categorized into low, medium, and high; considering both the hacking value and the
damage that could result from successful exploitation. The risk of a threat scenario is calculated by
the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

The Hacking Value is similarly categorized into low, medium, and high, and considers the incentive of
an attacker, as well as the effort required by an adversary to successfully execute the attack. The
hacking value is calculated as follows:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an adversary might gain from performing an attack successfully, effort
estimates the complexity of this same attack. The degrees of incentive and effort are defined as
follows:

Incentive:

▪ Low: Attacks offer the hacker little to no gain from executing the threat

▪ Medium: Attacks offer the hacker considerable gains from executing the threat

▪ High: Attacks offer the hacker high gains by executing this threat

Effort:

▪ Low: Attacks are easy to execute. They require neither elaborate technical knowledge nor
considerable amounts of resources

▪ Medium: Attacks are difficult to execute. They might require bypassing countermeasures, the
use of expensive resources or a considerable amount of technical knowledge

▪ High: Attacks are difficult to execute. The attacks might require in-depth technical knowledge,
vast amounts of expensive resources, bypassing countermeasures, or any combination of
these factors

SRL-reproducible-builds_baseline_assurance-report.docx Page 10 of 23

Incentive and Effort are divided according to table 3.

 Incentive

Effort Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 3: Hacking value is determined by effort and incentive

Hacking scenarios are classified by the risk they pose to the system. Conversely, the Damage describes
the negative impact that a given attack, if performed successfully, would have on the victim. The
degrees of damage are defined as follows:

Damage:

▪ Low: Risk scenarios would cause negligible damage to the Reproducible Builds process

▪ Medium: Risk scenarios pose a considerable threat to the Reproducible Builds process

▪ High: Risk scenarios pose an existential threat to the Reproducible Builds process

Damage and Hacking Value are divided according to table 4.

 Hacking value

Damage Low hacking value Medium hacking value High hacking value

Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 4: Risk is determined by damage and hacking value

After applying the framework to the Reproducible Builds ecosystem, different threat scenarios
according to the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack, namely
confidentiality, integrity, and availability.

Confidentiality: Confidentiality threat scenarios involve sensitive information related to systems
running the Reproducible Builds tools, primarily concerning data on the host system. Examples include
attackers exploiting information leaks on a build server, such as SSH keys, to compromise the host
machine.

Integrity: Integrity threat scenarios aim to disrupt the functionality of the Reproducible Builds process
by undermining or bypassing the reproducibility of an application that uses Reproducible Builds tools.

SRL-reproducible-builds_baseline_assurance-report.docx Page 11 of 23

This includes, for example, scenarios where modifications to the application remain undetected in the
Reproducible Builds pipeline. Undermining the integrity of the Reproducible Builds process often
comes with a high monetary incentive. For instance, if an attacker can integrate undetected changes
into a package, they could include a backdoor, potentially infecting all users of the application.

Availability: Availability threat scenarios involve compromising the availability of the build pipeline
used by projects utilizing Reproducible Builds tools, as well as the availability of the host systems
executing these tools. Key threat scenarios include denial-of-service (DoS) attacks on the build pipeline
and misleading reproducible tools into falsely believing a project is not reproducible, potentially
delaying the release of a package.

Table 5 provides a high-level overview of the hacking risks associated with the identified example
threat scenarios and attacks, as well as their respective hacking value and effort. The complete list of
threat scenarios identified along with attacks that enable them is provided in the threat model
deliverable. This list can serve as a starting point for the Reproducible Builds developers to guide their
security outlook for future feature implementations. By thinking in terms of threat scenarios and
attacks during code review or feature ideation, many issues can be caught or even avoided altogether.

Security goal
Hacking
value Example threat scenario

Easiness
of attack Example attack ideas

Confidentiality High A malicious package
exploits a command
injection vulnerability in
diffoscope, leading to the
disclosure of sensitive
information on the host
machine

Medium Unsanitized metadata
from the binary package is
used by diffoscope and
inserted into a shell
command. This can lead to
remote code execution
and consequently, host
compromise

Integrity High An HTML report can be
modified so that the
analyzed package does
not display malicious
changes, which would
normally show as a
difference in diffoscope

Medium The malicious package can
inject custom HTML into
the report. This allows it
to manipulate the report's
structure, potentially
hiding HTML elements
that indicate differences in
the compared files

Availability Low A malicious package
crashes strip-
nondeterminism, causing
the package build process
to fail and preventing the
package from being
released

Easy

An unhandled error occurs
when a tool dependency,
such as objdump, is
unavailable, leading to a
crash in strip-
nondeterminism

Table 5: Risk overview. The threats for Reproducible Builds were classified using the CIA security
triad model, mapping threats to the areas: (1) Confidentiality, (2) Integrity, and (3) Availability.

SRL-reproducible-builds_baseline_assurance-report.docx Page 12 of 23

4.2 Security design coverage check.

Next, the auditing team reviewed the Reproducible Builds design for coverage against relevant hacking
scenarios. For each scenario, the following two aspects were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

4.3 Implementation check

As a third step, we tested the current Reproducible Builds implementation for openings whereby any
of the defined hacking scenarios could be executed.

To effectively review the Reproducible Builds codebase, we derived our code review strategy based
on the threat model that we established in the first step. For each identified threat, hypothetical
attacks were developed and mapped to their corresponding threat category, as outlined in Chapter
4.1.

Prioritizing by risk, the code was assessed for present protections against the respective threats and
attacks as well as the vulnerabilities that make these attacks possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example, the comparator for ELF binaries in
diffoscope

2. Identified viable strategies for the code review. We performed mainly manual code audits,
with some static analysis where appropriate

3. Checked that the code did not contain vulnerabilities that could be used to execute the
respective attacks. Otherwise, we assessed that sufficient protection measures against
specific attacks were present

4. Immediately reported any vulnerability that was discovered to the development team along
with suggestions around mitigations

We carried out a hybrid strategy utilizing a combination of code review and static tests to assess the
security of the in-scope tools from the Reproducible Builds codebase.

While static testing establishes a baseline assurance, the focus of this audit was on manual code
review of the Reproducible Builds codebases to identify logic bugs, design flaws, and best practice
deviations. We reviewed the Reproducible Builds tools repositories up to the revisions shown in table
6. Since the Reproducible Builds codebases is entirely open source, it is realistic that an adversary
could analyze the source code while preparing an attack.

Tool Commit hash Commit date

diffoscope 0682af7c33b7ff4b120a733da5d75e4d5de45b13 2024-12-06

reprotest a7fb572f0854cbbedecb1a3c9373d33673b584c6 2024-09-02

strip-nondeterminism b8e5d87eeb5dabc83ac45b4c6a4923543736c5ea 2024-05-24

Table 6: Audited revisions of in-scope tools

SRL-reproducible-builds_baseline_assurance-report.docx Page 13 of 23

4.4 Remediation support

The final step is supporting Reproducible Builds with the remediation process of the identified issues.
Each finding was documented and published with mitigation recommendations. Once the mitigation
solution is implemented, the fix is verified by the auditors to ensure that it mitigates the issue and
does not introduce other bugs.

During the audit, findings were shared via the GitLab repositories [1, 2, 3]. Additional communication
was mainly done via email with some virtual meetings for clarification of selected questions.

SRL-reproducible-builds_baseline_assurance-report.docx Page 14 of 23

5 Findings summary

We identified 4 issues during our analysis of the Reproducible Builds tools in scope which included
diffoscope, reprotest and strip-nondeterminism. In summary, we identified 3 medium-severity and 1
information-level issues. An overview of all findings can be found in table 7.

5.1 Risk profile

The chart below summarizes vulnerabilities according to business impact and likelihood of
exploitation, increasing to the top right. The red border separates high and critical security issues
from informational to medium ones.

 Impact to Business (Hacking value)

S2-1

S2-2

S2-3

S0-4

 Likelihood (Ease) of Exploitation

 High 0

 Medium 3

 Low 0

 Informational 1

 Total Issues 4

SRL-reproducible-builds_baseline_assurance-report.docx Page 15 of 23

5.2 Issue summary

ID Issue Severity Status

S2-1 [6] S2-1 Undetected modification in ELF binary Medium Acknowledged

S2-2 [7]

S2-2 XML parsing via old versions of Pythons
xml.minidom is vulnerable to XEE attacks

Medium Mitigated [8]

S2-3 [9] S2-3 Calls to subprocess.check can lead to crashes of
diffoscope

Medium Acknowledged

S0-4 [10] S0-4 CSS argument is vulnerable to XSS injection Info Mitigated [11]

Table 7: Findings overview

SRL-reproducible-builds_baseline_assurance-report.docx Page 16 of 23

6 Detailed findings

6.1 S2-1 Undetected modification in ELF binary

Attack scenario An attacker modifies an ELF section without it being detected by
diffoscope

Tool diffoscope

Tracking https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/399

Attack impact Attackers can hide backdoors or altered execution paths inside an ELF
binary

Severity Medium

Status Acknowledged

Issue description
In diffoscope, when comparing ELF binaries, certain sections, such as .debug_hello, are skipped
during the comparison process. This is because all sections that start with “.debug” or “.zdebug” and
do not end with “_str” are skipped, as checked in the _should_skip_section function within
diffoscope/comparators/elf.py. Normally, if a difference is detected in a section, the command
readelf --wide --decompress --hex-dump=.custom {} is invoked to compare the contents.
However, for skipped sections, this command is never called.

Although skipped sections are not directly compared, the command strings --all --bytes=8 {}
would typically still catch the differences. However, this only works for strings longer than eight bytes.
If a string shorter than eight bytes is replaced, the change goes undetected by strings.

To avoid altering the binary's byte size and triggering metadata changes, an attacker could replace a
string with another string of the same size. This allows data in skipped sections like .debug_hello to
be replaced without detection. An example of this exploit scenario is attached.

Fortunately, if diffoscope cannot detect a difference using ELF tools, it falls back to binary comparison,
which reveals the difference. However, in real-world scenarios where developers or maintainers
compare an older version of a binary with a new release, other changes detected by ELF tools could
mask the undetected modification. If at least one legitimate change is detected, the data replacement
in skipped sections could remain unnoticed.

Risk
Undetected modifications in ELF binaries can alter a program's execution flow, leading to malicious or
unexpected behavior. In the worst case, this vulnerability could potentially be exploited to hide
backdoors within the binaries.

Mitigation
To address this issue, consider displaying the full hex difference either consistently at the end of the
comparison or specifically in edge cases. For example, if diffoscope detects that a section was skipped
and no changes are found using the strings command, it should automatically trigger a binary
comparison and display the difference, even when other ELF differences are detected. This approach
could help ensure that hidden modifications in skipped sections are properly detected and flagged.

https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/399

SRL-reproducible-builds_baseline_assurance-report.docx Page 17 of 23

6.2 S2-2 XML parsing via old versions of Pythons xml.minidom is vulnerable to XEE attacks

Attack scenario An attacker crafts a malicious XML file that included exponential entities
to slow down and eventually crash diffoscope during diff calculation.

Tool diffoscope

Tracking https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/397

Attack impact Attackers may crash diffoscope to make build pipelines fail and delaying
publication of package updates to distributions.

Severity Medium

Status Mitigated [8]

Issue description
diffoscope uses xml.dom.minidom from Pythons standard library to parse XML DOM content if the
safer defusedxml package is not installed. The standard library module is vulnerable to two kinds of
DOS attack vectors via entity expansion and/or large tokens if the version of the underlying C library
expat is not recent enough.

As described in Python module documentation [12] versions of expat <2.4.1 (released on 2021-05-
23) are vulnerable to exponential/quadratic entity expansion while versions <2.6.0 (released on 2024-
02-06) are vulnerable to large tokens. Since expat is usually provided by the system and not directly
bundled with Python, even recent Python installations can still be vulnerable due to old expat
versions.

Risk
For affected versions, the following example XML file leads to excessive parsing times with high
memory usage:

<!DOCTYPE xmlbomb [
<!ENTITY a "1234567890">
<!ENTITY b "&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;">
<!ENTITY c "&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;">
<!ENTITY d "&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;">
<!ENTITY e "&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;&d;">
<!ENTITY f "&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;">
<!ENTITY g "&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;&f;">
<!ENTITY h "&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;&g;">
<!ENTITY i "&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;&h;">
]>
<bomb>&i;</bomb>

Figure 1: XML bomb proof of concept

On resource-constrained systems this can lead to execution timeouts or even crashes, thus enabling
a DOS vector on diffoscope.

Mitigation
The issue is fixed by using recent versions of expat. However, as outlined above, this cannot be
enforced from diffoscope directly (besides vendoring expat directly) due to the reliance on system
libraries.

Nonetheless, diffoscope should detect if a vulnerable version is in use by checking
pyexpat.EXPAT_VERSION and either (1) aborting safely, or (2) continuing with a warning message to
inform the user of potential risks. In both cases the paths to mitigation by either installing defusedxml
(preferred) or upgrading expat should be printed to the user.

https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/397

SRL-reproducible-builds_baseline_assurance-report.docx Page 18 of 23

6.3 S2-3 Calls to subprocess.check can lead to crashes of diffoscope

Attack scenario An attacker makes a utility that diffoscope calls return non-zero exit codes
such that diffoscope crashes unexpectedly.

Tool diffoscope

Tracking https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/398

Attack impact Attackers may crash diffoscope to make build pipelines fail and delaying
publication of package updates to distributions.

Severity Medium

Status Acknowledged

Issue description
diffoscope uses various functions of the python subprocess module to call external programs like xz
or apktool to compare complex file formats and archives. The check_ variants of these functions
throw a CalledProcessError exception if the called subprocess exits with a non-zero returncode (i.e.
the command failed). These function calls are largely placed outside of try/except blocks and thus
lead to crashes of diffoscope if the subprocess exits unsuccessfully. The following snippets shows an
example location where the issue occurs:

def open_archive(self):
 [...]

 subprocess.check_call(
 (
 "apktool",
 "d",
 "-f",
 "-k",
 "-m",
 "-o",
 self._tmpdir.name,
 self.source.path,
),
 stderr=None,
 stdout=subprocess.PIPE,
)

 [...]

Figure 2: ApkContainer.open_archive (line 72ff.)

This issue also applies to Command.our_check_output which essentially just wraps
subprocess.check_output with an additional logging call. The following snippet shows an instance of
the dangerous usage of our_check_output:

def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 [...]

 output = our_check_output(cmd, shell=False, stderr=subprocess.DEVNULL)

 [...]

Figure 3: ElfContainer.__init__ (line 457ff.)

While the above sections are examples, all calls to subprocess functions that throw exceptions such
as CalledProcessErrors are problematic and should be mitigated.

https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/398

SRL-reproducible-builds_baseline_assurance-report.docx Page 19 of 23

Risk
The ease of crafting malicious files depends on the specific external tool being used. Malicious files
can cause external tools to exit abnormally, effectively crashing diffoscope. Alternatively, simple forms
of argument injection (e.g. from file metadata) can lead to unexpected return codes and thus crashes.

Mitigation
To ensure diffoscope operates correctly, it is essential to verify the return codes of external tools, as
their proper execution is critical to its functionality. Additionally, calls should be encapsulated within
try/except blocks to handle errors gracefully and ensure diffoscope exits safely in case of failures.

This mitigation is already in place in selected locations, sometimes even in the same file as the
problematic sections:

def get_debug_link(path):
 try:
 output = our_check_output(
 [get_tool_name("readelf"), "--string-dump=.gnu_debuglink", path],
 stderr=subprocess.DEVNULL,
)
 except subprocess.CalledProcessError as e:
 logger.debug("Unable to get Build Id for %s: %s", path, e)
 return None

 m = re.search(
 r"^\s+\[\s+0\]\s+(\S+)$",
 output.decode("utf-8", errors="replace"),
 flags=re.MULTILINE,
)
 if not m:
 return None

 return m.group(1)

Figure 4: Code location diffoscope/comparators/elf.py (line 416ff)

SRL-reproducible-builds_baseline_assurance-report.docx Page 20 of 23

6.4 S0-4 CSS argument is vulnerable to XSS injection

Attack scenario An attacker injects JavaScript in the generated HTML report which
executes code leading to XSS

Tool diffoscope

Tracking https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/396

Attack impact Attackers gets code execution once the report is opened but need to
manipulate the arguments of diffoscope to achieve it

Severity Info

Status Mitigated [11]

Issue description
Diffoscope allows custom CSS to be loaded for an HTML report. While the HTML input appears to be
properly escaped, the --css argument, which expects a URL, can be abused to insert custom Javascript
instead. For example, the following payload: --css "\"><svg/onload=alert(43433)>", results in an
an alert when opening the HTML report.

Risk
An attacker can inject malicious scripts into a trusted differential report, which comes with a variety
of problems associated with XSS e.g. reading sensitive data. Although the --css argument is typically
under user control, this assumption might not hold for all diffoscope use cases. For instance, a web
service like try.diffoscope.org [13] could, in the future, permit users to specify custom CSS,
exposing the service to potential XSS attacks.

Mitigation
Ensure that inputs provided to the --css argument are validated as valid URLs, as specified in the
--help documentation for --css.

https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/396

SRL-reproducible-builds_baseline_assurance-report.docx Page 21 of 23

7 Bibliography

[1] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope.

[2] [Online]. Available: https://salsa.debian.org/reproducible-builds/strip-nondeterminism.

[3] [Online]. Available: https://salsa.debian.org/reproducible-builds/reprotest.

[4] [Online]. Available: https://pypi.org/project/bandit/.

[5] [Online]. Available: https://pypi.org/project/safety/.

[6] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/399.

[7] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/397.

[8] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-
/commit/889597c91f19dc34d8a4ccc6db213c2ca15d4a21.

[9] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/398.

[10] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-/issues/396.

[11] [Online]. Available: https://salsa.debian.org/reproducible-builds/diffoscope/-
/commit/a36ee4ebd7494d6d24d537072974a4ae92437523.

[12] [Online]. Available: https://docs.python.org/3/library/xml.html#xml-vulnerabilities.

[13] [Online]. Available: https://try.diffoscope.org/.

SRL-reproducible-builds_baseline_assurance-report.docx Page 22 of 23

Appendix A: Technical services

Security Research Labs delivers extensive technical expertise to meet your security needs. Our
comprehensive services include software and hardware evaluation, penetration testing, red team
testing, incident response, and reverse engineering. We aim to equip your organization with the
security knowledge essential for achieving your objectives.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing
on our employees' decades of experience in developing and securing a wide variety of applications.
Our work includes design and architecture reviews, data flow and threat modelling, and code
analysis with targeted fuzzing to find exploitable issues.

BLOCKCHAIN SECURITY ASSESSMENTS We offer specialized security assessments for blockchain
technologies, focusing on the unique challenges posed by decentralized systems. Our services
include smart contract audits, consensus mechanism evaluations, and vulnerability assessments
specific to blockchain infrastructure. Leveraging our deep understanding of blockchain technology,
we ensure your decentralized applications and networks are secure and robust.

POLKADOT ECOSYSTEM SECURITY We provide comprehensive security services tailored to the
Polkadot ecosystem, including parachains, relay chains, and cross-chain communication protocols.
Our expertise covers runtime misconfiguration detection, benchmarking validation, cryptographic
implementation reviews, and XCM exploitation prevention. Our goal is to help you maintain a secure
and resilient Polkadot environment, safeguarding your network against potential threats.

TELCO SECURITY We deliver specialized security assessments for telecommunications networks,
addressing the unique challenges of securing large-scale and critical communication infrastructures.
Our services encompass vulnerability assessments, secure network architecture reviews, and
protocol analysis. With a deep understanding of telco environments, we ensure robust protection
against cyberthreats, helping maintain the integrity and availability of your telecommunications
services.

DEVICE TESTING Our comprehensive device testing services cover a wide range of hardware, from
IoT devices and embedded systems to consumer electronics and industrial controls. We perform
rigorous security evaluations, including firmware analysis, penetration testing, and hardware-level
assessments, to identify vulnerabilities and ensure your devices meet the highest security standards.
Our goal is to safeguard your hardware against potential attacks and operational failures.

CODE AUDITING We provide in-depth code auditing services to identify and mitigate security
vulnerabilities within your software. Our approach includes thorough manual reviews, automated
static analysis, and targeted fuzzing to uncover critical issues such as logic flaws, insecure coding
practices, and exploitable vulnerabilities. By leveraging our expertise in secure software
development, we help you enhance the security and reliability of your codebase, ensuring robust
protection against potential threats.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of
sophisticated adversaries. We follow a formal penetration testing methodology that emphasizes
repeatable, actionable results that give your team a sense of the overall security posture of your
organization.

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration
tests based on our code-assisted methodology that lets us find deeper vulnerabilities, logic flaws,
and fuzzing targets than a black-box test would reveal. This gives your team a stronger assurance
that the significant security-impacting flaws have been found and corrected.

SRL-reproducible-builds_baseline_assurance-report.docx Page 23 of 23

SECURITY DEVELOPMENT LIFECYCLE CONSULTING We guide organizations through the Security
Development Lifecycle to integrate security at every phase of software development. Our services
include secure coding training, threat moelling, security design reviews, and automated security
testing implementation. By embedding security practices into your development processes, we help
you proactively identify and mitigate vulnerabilities, ensuring robust and secure software delivery
from inception to deployment.

REVERSE ENGINEERING We assist clients with reverse engineering efforts that are not associated
with malware or incident response. We also provide expertise in investigations and litigation by
acting as experts in cases of suspected intellectual property theft.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor
designs, embedded systems, mobile devices, and consumer-facing end products to core networking
equipment that powers Internet backbones.

VULNERABILITY PRIORITIZATION We streamline vulnerability information processing by
consolidating data from compliance checks, audit findings, penetration tests, and red team insights.
Our prioritization and automation strategies ensure that the most critical vulnerabilities are
addressed promptly, enhancing your organization's security posture. By systematically categorizing
and prioritizing risks, we help you focus on the most impactful threats, ensuring efficient and
effective remediation efforts.

SECURITY MATURITY REVIEW We conduct comprehensive security maturity reviews to evaluate
your organization's current security practices and identify areas for improvement. Our assessments
cover a wide range of criteria, including policy development, risk management, incident response,
and security awareness. By benchmarking against industry standards and best practices, we provide
actionable insights and recommendations to enhance your overall security posture and guide your
organization toward achieving higher levels of security maturity.

SECURITY TEAM INCUBATION We provide comprehensive support for building security teams for
new, large-scale IT ventures. From Day 1, our ramp-up program offers essential security advisory and
assurance, helping you establish a robust security foundation. With our proven track record in
securing billion-dollar investments and launching secure telco networks globally, we ensure your
new enterprise is protected against cyberthreats from the start.

HACKING INCIDENT SUPPORT We offer immediate and comprehensive support in the event of a
hacking incident, providing expert analysis, containment, and remediation. Our services include
detailed forensics, malware analysis, and root cause determination, along with actionable
recommendations to prevent future incidents. With our rapid response and deep expertise, we help
you mitigate damage, recover swiftly, and strengthen your defenses against potential threats.

	Disclaimer
	Timeline
	1 Executive summary
	1.1 Engagement overview
	1.2 Observations and Risk
	1.3 Recommendations

	2 Evolution suggestions
	2.1 Business logic improvement suggestions
	2.2 Secure development improvement suggestions
	2.3 Address currently open security issues
	2.4 Further recommended best practices

	3 Motivation and scope
	4 Methodology
	4.1 Threat modeling and attacks
	4.2 Security design coverage check.
	4.3 Implementation check
	4.4 Remediation support

	5 Findings summary
	5.1 Risk profile
	5.2 Issue summary

	6 Detailed findings
	6.1 S2-1 Undetected modification in ELF binary
	6.2 S2-2 XML parsing via old versions of Pythons xml.minidom is vulnerable to XEE attacks
	6.3 S2-3 Calls to subprocess.check can lead to crashes of diffoscope
	6.4 S0-4 CSS argument is vulnerable to XSS injection

	7 Bibliography
	Appendix A: Technical services

