

Corporate Design

2016

Phoenix Architecture Review
Threat model and hacking assessment report
V.1.0

Prepared for:
Phoenix R&D

Phoenix Architecture Review Public, Page 1 of 39

1 Executive summary .. 3
1.1 Engagement overview .. 3
1.2 Observations and Risks ... 3
1.3 Recommendations .. 3
2 Evolution suggestions .. 4
2.1 Evolve the attacker model .. 4
2.2 Evolve the protocol description .. 4
2.3 Evolve the security posture .. 4
3 Motivation and scope .. 5
4 Methodology ... 7
4.1 Threat modeling and attacks .. 7
4.2 STRIDE Categories and Threat Scenarios: ... 8
4.3 Risk assessment using STRIDE .. 9
4.4 STRIDE threat mapping ... 10
5 Protocol Design .. 11
5.1 Architecture overview .. 11
5.2 Registration .. 13
5.3 Group creation ... 14
5.4 Connection ... 16
5.5 Add users to a group .. 18
5.6 Message fan-out ... 20
6 Findings summary .. 21
6.1 Risk Profile .. 21
6.2 Issue Summary ... 22
7 Findings details .. 23
7.1 SRL-1-SPA: Friendship tokens can be passed on to maliciously add users to a group 24
7.2 SRL-2-SPO: User identity confusion for client credential authenticated calls 26
7.3 SRL-3-PRI: Server can link users to Privacy Pass token redemption 28
7.4 SRL-4-SPO: Existing friendship tokens can be overwritten by other users 29
7.5 SRL-5-PRI: Queue sizes allow inferring the number and size of messages 31
7.6 SRL-6-PRI: FQDNs of federated servers visible to honest-but-curious QS 32
7.7 SRL-7-PRI: Insufficient anonymity set size in small instances ... 33
8 Detailed recommendations .. 34
8.1 Attacker .. 34
8.2 Protocol description ... 35
8.3 Security posture ... 36
9 Bibliography ... 37
10 Appendix A: SRLabs technical services .. 38

Phoenix Architecture Review Public, Page 2 of 39

Disclaimer
This report describes the findings and core conclusions derived from the audit carried out by Security
Research Labs (SRLabs) within the agreed-on timeframe and scope as detailed in the following
sections.
Please note that this report does not guarantee that all existing security vulnerabilities were
discovered in the codebase exhaustively and that following all evolution suggestions may not ensure
all future concepts or code to be bug free.

Version: V.1.0

Prepared For: Phoenix R&D

Date: October 24, 2024

Authors: Marc Heuse
Tobias Mueller
Bruno Produit

Timeline
The Phoenix architecture received a thorough security assessment by Security Research Labs in
summer 2024.

Date Event

June 20, 2024 Initial engagement

October 31, 2024 Final report delivered to Phoenix R&D

Table 1. Audit timeline

Phoenix Architecture Review Public, Page 3 of 39

1 Executive summary

The Phoenix protocol [1] is a federated, state-of-the-art secure messaging protocol that requires
minimal metadata. Besides federation, Phoenix tries to differentiate itself from other secure
messengers by placing special emphasis on the security and privacy of users against snapshot attacks
to minimize data that law enforcement can obtain with a court order. Phoenix builds on Message
Layer Security (MLS) [2] and provides three actors: (1) the Authentication service (AS) to provide
identities, (2) the Delivery service (DS) to accept and distribute messages, and (3) the Queuing service
(QS) for messages to be retained for clients to fetch them.
Security Research Labs reviewed the protocol and can attest that Project Phoenix has proactively
implemented effective security measures and taken security and privacy seriously. These measures
have significantly strengthened the protocol’s security posture.
During the review, SRLabs identified seven issues, confirmed them with Phoenix, and proposed
mitigations. There were no critical issues and three issues of high severity, all of which are already
resolved.

1.1 Engagement overview

This work describes the result of the architecture review of the Phoenix protocol performed by SRLabs.
SRLabs provides specialized audit services in the security ecosystem.
During this review, Phoenix provided access to relevant documentation and supported the research
team effectively. The protocol design was reviewed by SRLabs to assure that the Phoenix protocol is
resilient to hacking and abuse.

1.2 Observations and Risks

The research team identified seven issues ranging from high to low severity levels. Most identified
issues were related to privacy or spamming potential. Phoenix, in cooperation with the auditors, has
already addressed all identified issues.

1.3 Recommendations

We recommend placing strong emphasis on closing the gap between the specification and the current
implementation. It is important to ensure that the specification is extended to cover all functionalities
that have been implemented but remain undocumented. Additionally, a thorough investigation
should be conducted to verify that the implementation aligns with the details outlined in the
specification. Ensuring consistency between the specification and implementation will not only
prevent misunderstandings but will also enable engineers to implement features more reliably and
securely. A review will help identify any discrepancies and ensure that both the specification and
implementation are in complete sync.

Phoenix Architecture Review Public, Page 4 of 39

2 Evolution suggestions

The results of the audit show that Phoenix is designed with security and privacy in mind. To ensure
that Phoenix is secure against further unknown or yet undiscovered threats, we recommend
considering the evolution suggestions described in this section. This section presents a summary of
our suggestions for further improving the Phoenix architecture. A more detailed presentation can be
found in section 8.

2.1 Evolve the attacker model

The Phoenix protocol is designed to primarily defend against the “snapshot attacker”. The snapshot
attacker is very common in the messaging space and is characterized by the ability to read data at a
certain point in time but not continuously monitor the operations. We recommend developing
strategies around a stronger adversary to ensure a robust and trustworthy architecture.
We recommend designing safeguards around the concept of the “honest-but-curious attacker”. This
would further strengthen Phoenix’s commitment to privacy and favor their security position against
other private messaging systems. This type of attacker not only can read data and but also keep
historical records at their discretion. This attacker model reflects potential privacy risks more
accurately than the snapshot attacker, and incorporating its respective design safeguards can in turn
enhance user trust.
Another recommendation is analyzing data accessibility levels for each attacker in a worst-case
scenario. Detailed enumeration of accessible and inferable data based on the attacker’s access level
helps identify potential vulnerabilities which can then be addressed.

2.2 Evolve the protocol description

We recommend evolving the specification by taking a client's perspective. Our suggestions include
describing core use-cases, e.g. revolving around processes for a comprehensive overview of message-
sending and API call requirements, to provide clarity to implementors and reviewers. To further
provide clarity for users and reviewers, we recommend explaining the use of every sort of persisted
data, including a technical justification for why a data item is required to operate the service.
Conveying the semantics and necessity of data items like user activity timestamps can significantly
contribute towards a more secure data management strategy. Finally, centering a description around
the user’s client also facilitates streamlining the existing parts of the specification.

2.3 Evolve the security posture

We recommend evolving the defensive mechanisms of the architecture, particularly in relation to the
storage of private or secret key material and their leak prevention. Guiding implementors towards
safeguard measures such as keeping these keys offline or in an Hardware Security Module (HSM) can
substantially reduce security risks. Potential denial-of-service (DoS) vectors should also be quantified
with regards to the computational, network, and I/O overhead to facilitate a risk assessment. Further,
post-compromise security scenarios should be apprehended to mitigate the effects of forceful
disclosure of user credentials or server operators surrendering their keys. Finally, advocating for
cryptographic primitives and schemes that are not encumbered by patents ensures that the
development and operation can proceed with fewer barriers.

Phoenix Architecture Review Public, Page 5 of 39

3 Motivation and scope

This report presents the security audit conducted by SRLabs as part of the Open Tech Fund’s Security
Lab initiative [3]. This document focuses solely on the analysis of the Phoenix protocol documentation.
The implementation [4] is reviewed in a subsequent phase.
From a technical perspective, Phoenix’s core functionality is to provide an MLS-based privacy-friendly
federated messaging service. Message Layer Security is a protocol for the secure exchange of
messages [2]. However, MLS does not specify how exactly various components behave. The Phoenix
protocol fills in this gap by striving to require as little data about its users or their behavior as possible.
The Phoenix protocol is described in a publicly available document [1] which serves to guide engineers
in implementing a secure version of the federated protocol by providing clear definitions of essential
components and their interaction. SRLabs examined this documentation considering its audience to
assess the protocol's security and ensure that the documentation highlights potential security issues
that could arise during implementation.
The core component of the documentation is the chapter titled “Specification” which describes the
services of the Phoenix home server. These services are the scope of our review: The Authentication
service (AS), the Delivery service (DS), the Queuing service (QS), and their interaction as well as
persisted data.
The scope of this review also includes the client’s interactions with the Phoenix services. We consider
These interactions include registering an account, creating a group, creating a connection, adding a
user to a group, and sending a message. Finally, the review’s scope also includes the messages
exchanged during interactions as well as their cryptographic protection.
This review does not include network-related issues in its scope. Network issues include DNS hijacking
and the delay, reordering, or retransmission of network packets. Furthermore, the risks of analyzing
traffic patterns are recognized as orthogonal to providing a messaging platform and are excluded from
the scope of this review. We also do not consider cases of compromise of any party’s secret or private
key. For example, the AS posting their private key or clients sharing their credentials. Table 2 provides
a view of actors and assets and whether they are in the scope of this review.

Actor Asset In scope

User 2FA token
Username
Attention & Motivation
Resources
Availability
Friendship token

Yes

Client Client to server authentication key material
Local QS user record
Client to client authentication key material

No

Home server Group state
KeyPackage
Client to server authentication key material
server to server authentication key material
Usernames
Message queue
2FA

Yes

Home-server Operator Home server admin credentials
Home server configuration
Hosting cost

No

Phoenix Architecture Review Public, Page 6 of 39

Federated Home server Server to server authentication key material No

Federated User No

Federated Client Client to client authentication key material
Local QS user record

No

Federated Home server Operator Allow-list configuration No

Table 2. Actors and assets in scope

Phoenix Architecture Review Public, Page 7 of 39

4 Methodology

This report details the security assurance results for the Phoenix messaging protocol, aiming to create
transparency through threat modeling, security design review, and remediation support. We applied
the methodology described in this section when performing feature reviews, which aligns with the
STRIDE framework [5] for threat modeling.

4.1 Threat modeling and attacks

The goal of the threat model framework is to determine specific areas of risk in Phoenix protocol.
Familiarity with these risk areas can provide guidance for the design of the implementation stack, the
actual implementation of the stack, and the security testing. This section introduces how risk is defined
and provides an overview of the identified threat scenarios.
The risk level is categorized into low, medium, and high and considers both the hacking value and the
damage that could result from successful exploitation. The risk of a threat scenario is calculated by
the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

The Hacking Value is also categorized into low, medium, and high, and considers the incentive of an
adversary, as well as the effort required to successfully execute the attack. The hacking value is
calculated as follows:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an adversary might gain from performing an attack successfully, effort
estimates the complexity of this attack. The degrees of incentive and effort are defined as follows:
Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.
• Medium: Attacks offer the hacker considerable gains from executing the threat.
• High: Attacks offer the hacker high gains by executing this threat.

Effort:
• Low: Attacks are easy to execute. They require neither elaborate technical knowledge nor

considerable amounts of resources.
• Medium: Attacks are difficult to execute. They might require bypassing countermeasures, the

use of expensive resources or a considerable amount of technical knowledge.
• High: Attacks are difficult to execute. The attacks might require in-depth technical knowledge,

vast amounts of expensive resources, bypassing countermeasures, or any combination of
these factors.

Incentive and effort are divided according to Table 3.

Hacking value Low incentive Medium incentive High incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 3. Hacking value measurement scale

Hacking scenarios are classified by the risk they pose to the system. Conversely, the Damage describes
the negative impact that a given attack, if performed successfully, would have on the victim. The
degrees of damage are defined as follows:

• Low: Risk scenarios would cause negligible damage to the user of the Phoenix protocol.

Phoenix Architecture Review Public, Page 8 of 39

• Medium: Risk scenarios pose a considerable threat to Phoenix‘s functionality or privacy.
• High: Risk scenarios pose an existential threat to Phoenix network functionality or privacy.

Damage and hacking value are divided according to Table 4.

Risk Low hacking value Medium hacking value High hacking value
Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 4. Risk measurement scale

After applying the threat model framework to the Phoenix system, we identified the different threat
scenarios according to STRIDE. These are outlined in the following section.

4.2 STRIDE Categories and Threat Scenarios:

The STRIDE framework is a widely used security model that helps identify potential threats in software
systems. It stands for Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege, each representing a different category of security risks.
We have expanded the STRIDE framework for this engagement by including two additional categories
that better reflect all possible threats: Privacy Breaches, and Spam and Annoyances. This enhanced
approach allows for a more comprehensive analysis, ensuring that all relevant security and privacy
concerns are thoroughly addressed. These categories are described below:

Spoofing

Spoofing refers to when an attacker poses as another legitimate user or entity within the Phoenix
messaging protocol. This could allow unauthorized access to communications, enabling the attacker
to send or receive messages as someone else. For example, the attacker might impersonate a trusted
user to intercept sensitive information or initiate malicious conversations, thus undermining the
identity verification process within the protocol.

Tampering

Tampering involves the unauthorized alteration of data as it is transmitted within the Phoenix
messaging protocol. A potential threat scenario could involve an attacker intercepting and modifying
the content of messages, potentially altering commands, instructions, or even the meaning of
conversations. This could result in disrupted communication, misinformation, or the injection of
malicious data into the system, which affect the integrity of the message exchange.

Repudiation

Repudiation threats concern the denials of action taken within the Phoenix protocol, where an
attacker denies having sent or received specific messages. Without proper mechanisms to log and
verify the authenticity of sent and received communications, the attacker could claim plausible
deniability for harmful actions, such as sending malicious commands or fraudulent messages. Ensuring
non-repudiation in the Phoenix protocol is essential for verifying the authenticity of message
exchanges.

Information Disclosure

Information disclosure occurs when sensitive data, such as message content, user credentials, or
metadata, is exposed to unauthorized parties. For the Phoenix messaging protocol, this could involve
an attacker accessing private conversations or sensitive details about message routes. An example
scenario might involve the attacker using a vulnerability to extract private messages from a server or

Phoenix Architecture Review Public, Page 9 of 39

intercepting encrypted messages during transmission. Such information disclosure could lead to data
breaches, privacy violations, or further exploitation of sensitive data.

Denial of Service (DoS)

Denial-of-service attacks in the context of the Phoenix messaging protocol aim to prevent legitimate
users from sending or receiving messages by overwhelming the system with excessive requests or
exploiting protocol vulnerabilities. An attacker could flood the message queues, exhaust resources, or
take advantage of a specific weak point to disrupt communication between users. This could render
the messaging protocol unavailable to legitimate users, affecting the overall functionality of the
system.

Elevation of Privilege

Privilege escalation attacks occur when an adversary gains a higher level of permissions within the
Phoenix messaging protocol than that which they are authorized to have. For example, the attacker
might exploit a flaw in the protocol to elevate their permissions from a standard user to an
administrator, thus granting them access to sensitive information or allowing them to manipulate the
message flow. This threat represents a serious risk to the integrity and control of the system.

Privacy Breaches

Privacy breaches involve the unauthorized access to, collection, or exposure of personal or sensitive
information. This can lead to identity theft, financial loss, or other privacy violations. Privacy breach
prevention is crucial for Phoenix as the federated nature of the app could expose data across multiple
servers if not properly secured.

Spam and Annoyances

Spam and annoyances refer to the unsolicited, excessive, or disruptive communications, notifications,
or actions that not only degrade the user experience but can also burden system resources and
compromise efficiency. For Phoenix, this includes the risk of spam spreading across federated nodes,
potentially overwhelming users and servers.

4.3 Risk assessment using STRIDE

Each identified STRIDE threat is assessed based on the likelihood of exploitation and the potential
impact on the Phoenix messaging protocol. For each category, the attacker’s incentive and effort
required to exploit a vulnerability are used to estimate the hacking value, as described earlier.
Similarly, the damage posed by successfully exploiting a threat scenario is calculated to assess overall
risk.

Phoenix Architecture Review Public, Page 10 of 39

4.4 STRIDE threat mapping

The STRIDE threat modeling framework is a systematic approach to identify and analyze potential
threats to a system. Threats are categorized and addressed by considering six distinct types,
corresponding to the STRIDE acronym.

Scope category Asset
Hacking
value

Easiness of
attack Overall risk

Spoofing 2FA
Username
Client to server authentication
key material

High Medium High

Tampering Message queue
Group state
KeyPackage

Medium Critical High

Repudiation Message queue Low Low Low

Information
disclosure

Client to server authentication
key material
Message queue

High High High

Denial of service 2FA
Client to server authentication
key material

Low Critical Medium

Elevation of privilege 2FA
Client to server authentication
key material

High Low Medium

Privacy breach Message queue
Client to server authentication
key material
Group state
KeyPackage

Critical Critical Critical

Spam and annoyances Message queue High Critical Critical

Phoenix Architecture Review Public, Page 11 of 39

5 Protocol Design

This section provides an overview of the Phoenix architecture and its subprotocols for establishing an
identity, managing groups, and sending messages. This overview is the basis for the findings presented
in the next section.

5.1 Architecture overview

The Phoenix architecture is based on MLS. MLS defines how clients interact but deliberately leaves it
open how, for example, identities are established or how clients fetch messages. These open ends are
tied together by the Phoenix protocol.
The Phoenix architectural center is the home server which consists of three components: The
Authentication service, the Delivery service, and the Queueing service:

§ The Authentication service (AS) establishes the cryptographic identities of the users.
§ The Delivery service accepts messages and distributes them to the relevant users by sending

them to the Queueing Service (QS).
§ The Queueing service (QS) retains messages until they are fetched by their users.

These components are meant to be independent so that they can be run by different entities. The
consequence of this independence is a trust boundary between the components. For example, the QS
must not learn which user is fetching messages. Another trust boundary exists between the users and
the home server. For example, the server must not learn who is part of which group and who sends
messages to which other users.

Figure 1. Phoenix architecture overview

Phoenix Architecture Review Public, Page 12 of 39

Authentication service

The authentication service (AS) is the identity provider in the Phoenix architecture. It provides API calls
pertaining to account management, such as registering accounts, deleting accounts, or changing
account properties. A central addition to the MLS concepts is the concept of a connection, which is
the ability to add users to groups. Connections are established by fetching connection packages which
are kept by the AS for other users to fetch.
Additionally, the connection packages are tied to their own user. This direct relationship to a user is
not always desirable as it allows for inferences on the user’s identity when a contact is made. To
prevent these inference, users can also upload a connection package without a reference to the actual
user. Instead of binding the connection package to a user, the connection package is bound to an alias.
The AS offers users to register unlimited aliases and does not keep an association between the alias
and the user that registered it.
The AS also maintains a queue for the user and its aliases. These AS queues are used to route the
connection packages. Once the users establish a connection, the queuing service queues are used for
routing messages.
The AS also manages the issuance and redemption of privacy pass tokens. Privacy pass tokens are used
to manage API quotas and maintain service stability for all clients. Traditionally, rate limiting is
implemented by recording the time and user of an action. If a user causes too many actions in too
short of a period, further requests will be blocked. Keeping a record of the user performing an action
trivially enables the server to learn which user performs which action, e.g., sending a message. The
use of privacy passes as a rate limiting mechanism ensures that the server can limit the number of
actions any user can perform without knowing the individual user behind each action. This mechanism
works by first handing out tokens which can be redeemed later by the users. This ensures the server
limits the number of overall actions that can be performed rather than which actions an individual
user performed. During redemption, the privacy pass mechanism ensures that the server does not
learn which user is redeeming the token.

Delivery service

The delivery service (DS) maintains the groups required for communication among users. Groups are
a core concept of MLS and central to Phoenix. The DS offers calls to create groups, add users, and
delete groups. The DS maintains the state of groups and modifies it according to the client’s request.
The group’s state is stored encrypted with a key provided by the client on every call. Storing the state
encrypted protects it against an attacker capable of reading the persistent storage.
The DS also distributes group messages by sending them to the Queuing service. The DS fetches the
group’s members from the state. The members are pseudonyms that do not have a direct relationship
to the user ID or the cryptographic identity maintained by the AS. Instead of user IDs, the group’s state
contains IDs for the member’s queues. The DS forwards those queue IDs to the QS to let it retain the
messages.

Queuing service

The Queuing service (QS) retains messages for clients to fetch. Clients register queues and
continuously query the QS for new messages. The queues do not have a direct relationship with the
user but are maintained as simple integers with a signing key. Users interacting with the queue need
to present requests signed with the queue’s signing key to prove their eligibility.

Phoenix Architecture Review Public, Page 13 of 39

5.2 Registration

The user registration process is composed of a call to the registration interface followed by a call for
provisioning the user’s queues:

Figure 2. Registration process

Phoenix Architecture Review Public, Page 14 of 39

5.3 Group creation

The core concept in MLS is a group. A group contains one or more users and is used to send messages.

Figure 3. Group creation process 1/2

Phoenix Architecture Review Public, Page 15 of 39

Figure 4. Group creation process 2/2

Phoenix Architecture Review Public, Page 16 of 39

5.4 Connection

One of the core concepts of Phoenix is that of a user establishing a connection with another user. A
connection is considered a requirement to be able to add a user to a group or send them a message.
Two users have a connection once they are members of a dedicated two-user group. The connection
is a vehicle for transmitting so-called “friendship keys” which are used to fetch key material required
for adding the user to a group.

Figure 5. Connection establishment 1/2

Phoenix Architecture Review Public, Page 17 of 39

Figure 6. Connection establishment 2/2

Phoenix Architecture Review Public, Page 18 of 39

5.5 Add users to a group

After creating a group and having established a connection, a user can add another user to the group
for exchanging messages.

Figure 7. Adding a user to a group 1/2

Phoenix Architecture Review Public, Page 19 of 39

Figure 8. Adding a user to a group 2/2

Phoenix Architecture Review Public, Page 20 of 39

5.6 Message fan-out

Finally, users want to send messages to each other. The DS accepts and distributes the messages.

Figure 9. Message Fan-Out

Phoenix Architecture Review Public, Page 21 of 39

6 Findings summary

The analysis of the Phoenix protocol identified seven issues in line with the possible attack scenarios
described in Section 4.3. In summary the findings amounted to zero critical severity, three high
severity, one medium severity, three low severity, and zero info level issues were found.

6.1 Risk Profile

The table below contains the findings’ identifiers according to the impact and likelihood of
exploitation, increasing to the top right. The red margin separates high/critical issues from
informational/low/medium ones.
 Impact (Hacking value)

SRL-2-SPO

SRL-3-PRI

SRL-1-SPA

SRL-5-PRI
SRL-6-PRI
SRL-7-PRI

SRL-4-SPO

 Likelihood (ease) of exploitation

Severity Count

Critical –

High 3

Medium 1

Low 3

Informational –

Total 7

Phoenix Architecture Review Public, Page 22 of 39

6.2 Issue Summary

Issue Severity Status

SRL-1-SPA: Friendship tokens can be passed on to maliciously add users to a
group

High Mitigated

SRL-2-SPO: User identity confusion for client credential authenticated calls High Mitigated

SRL-3-PRI: Server can link users to Privacy Pass token redemption High Mitigated

SRL-4-SPO: Existing friendship tokens can be overwritten by other users Medium Mitigated

SRL-5-PRI: Queue sizes allow inferring the number and size of messages Low Accepted

SRL-6-PRI: FQDNs of federated servers visible to honest-but-curious QS Low Accepted

SRL-7-PRI: Insufficient anonymity set size in small instances

Low Accepted

Table 5: Findings overview

Phoenix Architecture Review Public, Page 23 of 39

7 Findings details

This section describes the findings of this audit in detail. Each finding is presented through an initial
description of the underlying problem, its associated risk, and potential mitigation strategies.
Additionally, each issue is assigned a severity level based on the likelihood of it taking place and its
estimated impact.

Phoenix Architecture Review Public, Page 24 of 39

7.1 SRL-1-SPA: Friendship tokens can be passed on to maliciously add users to a group

Scope category SPAM

Reference SRL-1-SPA

Severity High

Status Mitigated in PR 32 [6]

Issue description

This first issue has to do with friendship tokens that can be passed on to maliciously add users to a
group. In our analysis, we could identify that a user, which we will call Bob, could have his friendship
token and friendship encryption key passed on to a third party, allowing them to add Bob to a group
and send him messages without his consent. Friendship tokens are static, and each connection partner
receives the same token. This means that another user, like Alice can establish a connection with Bob,
obtain his friendship token, and pass it on to a third malicious user, Eve. Eve can then add Bob to a
group without having to establish a connection with Bob first.

Risk

The risk of this issue is that a user can be added to a group without the user's permission. The
specification describes that users must have established a previous connection so that a user can add
another to a group and send them messages. However, as shown in our example, Bob and Eve do not
have a connection.

Mitigation

Our proposed mitigation is to ensure affected users ignore unsolicited group invitations or messages.
This mitigation relies on the expectation that the affected user whose friendship token is shared is has
knowledge of which other users received their friendship token. As such our mitigation suggestion is
to ensure this best practice of ignoring unsolicited requests is reflected in through guidance and
development changes:

§ Guidance: Currently, the specification does not explain how users should deal with incoming
groups by users who they have no connection with. This best practice should be explicitly
included in the documentation to ensure users can validate incoming group requests.

§ Per-user friendship token: Instead of a single symmetric, long-lived friendship token, the user
can create per-connection friendship tokens to achieve the following:

o keep a record of which other users received which Friendship Token, and
o validate incoming messages’ provenance to be from that user.

Phoenix Architecture Review Public, Page 25 of 39

Figure 10. Friendship token can be passed on

Phoenix Architecture Review Public, Page 26 of 39

7.2 SRL-2-SPO: User identity confusion for client credential authenticated calls

Scope category Spoofing

Reference SRL-2-SPO

Severity High

Status Mitigated in PR 26 [7]

Issue description

This issue is related to user identity mix-ups during certain authenticated calls. The protocol’s
documentation outlines that certain calls require two user IDs to be provided by the caller; one for
the server to identify the entity on which to perform the action, and another for the authentication.
The required authentication identity is called ClientCredential and it contains the calling user's ID.
The server thus receives two user IDs. The specification does not provide guidance on how to handle
mismatching user IDs.
The ClientCredential authentication is required for the following calls:

§ Initiate 2FA
§ Finish User Registration
§ Update User Profile
§ Upload UserID Packages
§ Delete User
§ Dequeue Messages

Risk

This issue has the associated risk that duplication of values, such as providing the same user ID through
outer authentication and the inner payload, can lead to confusion about the actual user ID or
unauthorized actions. For instance, the server could authorize a call based on outer authentication
but then use the inner payload's value to determine the user to perform the action on. An example
would be the Update User Profile call, which requires both a user ID and the ClientCredential
authentication. While the server may authorize the update, it could potentially upload a new profile
for a different user.

Mitigation

To mitigate this issue we suggest either removing the redundant information or its guiding
implementors through the following steps:

§ Eliminate redundancy: We suggest having a single source of truth when it comes to the
information about users. This can be achieved through the decision to not require the user ID
for calls that are authenticated via ClientCredential. Thus, either remove the user ID from
those parameters and extract it from the ClientCredential or synthesize the
ClientCredential when receiving a user ID as a parameter.

§ Explicitly require matching user IDs: Another suggestion is to document the requirement of
validating user IDs to mitigate the risk of implementors confusing the user IDs.

Phoenix Architecture Review Public, Page 27 of 39

Figure 11 Identity confusion

Phoenix Architecture Review Public, Page 28 of 39

7.3 SRL-3-PRI: Server can link users to Privacy Pass token redemption

Scope category Privacy

Reference SRL-3-PRI

Severity High

Status Mitigated in PR 25 [8]

Issue description

This issue is related to the protocol’s design reliance on privacy pass tokens to provide unlinkable rate-
limitation of clients. Because of this, the server could generate a new private key for each user asking
for a token and record the key ID used for the user ID. During redemption, the server could then verify
all private keys and find the corresponding user ID.

Risk

This issue rises privacy concerns, as a malicious server could potentially recognize the user redeeming
a privacy pass token. The behavior of assigning a unique private key to a user, then recording that
key’s usage, and finally retrieving the user at the time of token redemption allows a server to link the
token’s applications to a particular user. This infringes on the user’s privacy.

Mitigation

We propose the following approach to mitigate this risk:
• Transparency: Assuming the server rotates keys for each epoch, it could publish the key post

each rotation. Clients can then validate that the tokens they receive can be verified using a
single key. While this does not prevent possible attacks, detection may deter a potential server
operator from carrying it out.

Phoenix Architecture Review Public, Page 29 of 39

7.4 SRL-4-SPO: Existing friendship tokens can be overwritten by other users

Scope category Spoofing

Reference SRL-4-SPO

Severity Medium

Status Mitigated in PR 32 [6]

Issue description

This issue is related to the documented process in which users upload their KeyPackages to the QS
under a freely chosen index, the friendship token. Other users fetch the KeyPackages by querying for
the friendship token. The specification furthermore allows for the QS to overwrite an existing
friendship token.

Risk

A malicious user (e.g. user Eve) could obtain another user’s friendship token, (e.g. from user Alice),
and utilize it for uploading a new KeyPackage. Another user, (e.g. user Bob) who established a
connection with Alice and obtained her friendship token, could then query the QS for the KeyPackages
under that token and expect Alice's KeyPackages in return for adding her to a new group. Instead, the
user gets Eve's KeyPackage and adds Eve to the new group, without having established a connection
with Alice beforehand.

Mitigation

The specification does not mention the case of a user overwriting an existing friendship token. For this
reason, we suggest reducing this gap by documenting and providing guidance through the following
principles:

§ Prevent: Treat the upload of an existing friendship token as an error. Given that the friendship
token is a random string chosen by the client, the likelihood of an attacker exhausting the key
space and preventing key distribution is low.

• Validate: When fetching an AddPackage with a friendship token, the user’s validation routine
should include whether the AddPackage belongs to the intended party. Since the user knows
which party a friendship token belongs to, the user can expect the party’s ClientCredential
when fetching the AddPackage. An AddPackage with a different party’s ClientCredential
should be rejected.

• Delay: After deleting a queue and the associated friendship token, do not allow populating an
AddPackage for a certain time to prevent the squatting of tokens.

Phoenix Architecture Review Public, Page 30 of 39

Figure 12 Overwriting friendship token

Phoenix Architecture Review Public, Page 31 of 39

7.5 SRL-5-PRI: Queue sizes allow inferring the number and size of messages

Scope category Privacy

Reference SRL-5-PRI

Severity Low

Status Accepted in PR 32 [6]

Issue description

This issue is related to unpadded messages which are added to queues increasing the queue size with
each message. A snapshot attacker has the capability to learn and analyze the sizes of the queues
within the messaging server. This knowledge can be leveraged to infer information about message
traffic.

Risk

This issue can allow a snapshot attacker to infer the number or size of messages being sent to a
particular user or an alias. While the use of aliases provides a layer of obfuscation against direct
correlation with individual users, the visibility of queue sizes can still lead to unintended exposure of
user behavior. An adversary in the search for a busy group could deduce which queue is used by the
group by looking at the size of it. Furthermore, this could help organize targeted DoS attacks on
specific groups.

Mitigation

We suggest the following mitigation strategies to address this risk:
• Padding: In addition to storing the messages in the queues, the queues can be inflated up to

a certain number or size of messages to yield a more uniform encrypted size across all queues.
For example, all queues could be padded up to the closest multiple of 1000.

• Grouping: Multiple queues can be combined so that separate keys decrypt only the relevant
queue. By combining multiple queues, the anonymity set of the affected users is bigger, thus
making it more difficult to learn something about a particular client or alias.

• ORAM: Advanced cryptographic schemes, such as Oblivious RAM, allow for operating over
data without the server learning which data is accessed and which operations are performed
on them.

• Updating the protocol specification: As this issue is hard to mitigate and has a low severity,
another potential mitigation is to explain this issue and its potential mitigations at the
implementation level.

Phoenix Architecture Review Public, Page 32 of 39

7.6 SRL-6-PRI: FQDNs of federated servers visible to honest-but-curious QS

Scope category Privacy

Reference SRL-6-PRI

Severity Low

Status Accepted in PR 32 [6]

Issue description

This issue is related to the federated nature of the protocol. In a federated setup, the use of FQDN to
route messages across different servers (e.g., phnx.shady-company.de and phnx.parliament.de)
could lead to the correlation of user data. The QS can access the user’s home server FQDN through
ClientQueueConfig when a message is sent.

Risk

An active observer, as well as an honest-but-curious home server, can log the outgoing messages'
FQDN to infer information about the server’s users. This information could be leveraged to reveal
sensitive information about a user’s interests and affiliations, even if the actual content of the
messages is encrypted. This has a more severe effect on smaller servers (as in they are not having
many registered users), as correlating a few users to outgoing domains may reveal the nature of the
interests of such users.

Mitigation

This issue is hard to mitigate as it comes by design with a federated setup. However, we recommend
improving the documentation in the following ways:

§ Document risks: State the risks different adversaries pose, the data the attackers have access
to, and the knowledge they can infer.

§ Transfer risks: Another route to partially mitigate the risk is enforcing a Tor [9] onion route
for each FQDN as well as federating only with .onion FQDNs, which rotate keys (and
associated domains) regularly. For better usability, we recommend documenting this as an
optional (opt-in) configuration for servers.

§ Updating the protocol specification: As this issue is hard to mitigate and has a low severity,
another potential mitigation is to explain this issue and its potential mitigations at the
implementation level.

Phoenix Architecture Review Public, Page 33 of 39

7.7 SRL-7-PRI: Insufficient anonymity set size in small instances

Scope category Privacy

Reference SRL-7-PRI

Severity Low

Status Accepted in PR 32 [6]

Issue description

In home servers with a small number of users, the correlation between the user activities and the
stored data, e.g., groupid, userid, queues, and timings, is much easier than in larger instances. The
small anonymity set size results in an attacker needing less additional information to attribute a usage
pattern to an individual user. Therefore, users relying on smaller servers can have insufficient
anonymity protections.

Risk

The risk of a snapshot attacker attributing a particular usage of the service to an actual user is higher
in small instances since there are fewer users that could be causing the usage. The usage can be
attributed by correlating a user ID with an alias, group ID, queues, message frequency, data volume,
and recipients. This information can be leveraged to infer and leak sensitive user information such as
how many groups a user is participating in, or to launch targeted denial-of-service (DoS) attacks
against specific users. The possibility of attributing a particular use of the service to a user is breaching
the privacy promises made by the service.

Mitigation

Small anonymity set sizes inherently reduce the protection an individual user can enjoy. Finding
technical measures to increase the protection for a small number of users conflicts with providing a
modern user experience to be able to compete in the messaging market as many academic attempts
have shown. We suggest documenting the resulting risk and finding technical solutions that do not
compromise user convenience:

• Quantify degree of anonymity: Establish metrics to quantify privacy risks in relation to the
number of users on the home server. For example, an instance with a single user allows for
trivial attribution of the observed usage.

• Minimum user threshold: Implement a minimum threshold for the number of users on a
home server before starting operation. Before an acceptable number of users has been
reached, the server could let users during sign-up know that operation will start soon.

• Padding: Letting both the server and users generate fake data to inflate the anonymity set
size could increase the user’s protection. A snapshot attacker cannot distinguish artificial data
from actual usage. The protection is less strong under an honest-but-curious server operator
since they can mark artificial and actual data.

• Updating the protocol specification: As this issue is hard to mitigate and has a low severity,
another potential mitigation is to explain this issue and its potential mitigations at the
implementation level.

Phoenix Architecture Review Public, Page 34 of 39

8 Detailed recommendations

In addition to the high-level recommendations outlined above, we propose a series of more specific
and actionable steps to address some key areas of concern. These detailed recommendations are
designed to provide further clarity on how to strengthen the development processes.
We group our suggestions into three categories: The attacker, the protocol, and the defense.

8.1 Attacker

Adversary: Design around an honest-but-curious attacker

The Phoenix protocol is designed to primarily defend against the so-called snapshot attacker. The
snapshot attacker can read data at a certain point in time but not continuously monitor the operations.
We recommend making the honest-but-curious attacker the primary adversary to defend against
privacy-related attacks. The honest-but-curious attacker can extend logging at their discretion and
keep historical records of data. We believe that this attacker model better reflects the risks for Phoenix
as it requires less trust in the server operator and is therefore better suited to gain the users’ trust.

Data: Analyze data accessible by each attacker in a worst-case scenario

We recommend defining and enumerating the data that could be obtained or inferred by each type
of attacker in a worst-case scenario. We further suggest performing this enumeration in the form of a
list that outlines potential vulnerabilities and the specific data that could be exposed based on the
attacker's access level (e.g., malicious client, compromised server, or external attacker). By explicitly
detailing these risks, the protocol can better address mitigation strategies and ensure that any
potential data leaks are minimized and well understood by developers and users alike. We recommend
conducting this exercise this from the perspective of each defined attacker.
In particular, the honest-but-curious server operator mentioned before is interesting because the
Phoenix server operator could be coerced into changing their behavior in ways that are not visible to
an outsider, such as extending the logging or correlating data from the AS, DS, and QS. The projected
userbase is interested in an analysis of the security guarantees based on both the protocol and the
operator’s behavior. By making explicit which data can be accessed or inferred from an honest-but-
curious operator, users gain trust in the product and leave less room for speculations or insinuations.

DoS vectors: Quantify computationally expensive functions and potential DoS vectors

We recommend explicitly clarifying which party—client, server, or other—is responsible for the
estimated computational, network, and I/O overhead in the provided calculations. While it is currently
implied that both the client and the home server share the computational effort, the distinction
between their respective workloads should be more clearly defined. This is particularly important for
identifying potential DoS vectors. Understanding which entity bears the bulk of the effort will highlight
areas of vulnerability. For example, computationally heavy operations like group joining (estimated at
5n–10n asymmetric operations) could be exploited if this cost is predominantly borne by the server.
Similarly, fan-out messaging in federated environments might create network amplification risks,
which need mitigation strategies, such as rate limiting. By clearly attributing these efforts, it will be
easier to analyze performance and security risks.

Phoenix Architecture Review Public, Page 35 of 39

8.2 Protocol description

Client-side: Describe the protocol around core use cases

The specification describes the services provided by the home server and intends to guide
implementors to create such services. However, it predominantly takes the perspective of the server
side. We recommend to also include the client’s perspective by describing core processes, such as
registration, connection establishment, group creation, or messaging. Currently, the specification
does not provide an overview of the messages sent or API calls required to achieve a certain goal.
Describing how and in which order the API calls are meant to be used helps both implementors and
reviewers to understand the protocol.

Stored data: Explain the use of all types of persisted data

We recommend explaining the reasons behind data storage for each item of the persisted state.
Currently, the specification lists the data the AS, DS, and QS persist. For example, the AS requires user
entries with OPAQUE records, the user's encrypted profile, and their last activity timestamp. For most
items, the specification either mentions what the data is used for or links to further information, e.g.,
the OPAQUE entry exists because it is a "protocol artifact that allows the user to authenticate itself
via its password in queries to the AS".
However, some items such as the activity timestamp do not have an associated explanation for their
persistence. The semantic of the data is explained as follows: "Timestamp indicating the last time a
client has fetched messages from the queue". However, there is no explanation as to why the server
needs it for operating the services.
As a general practice, the server should store as little data as possible, and each stored item should be
motivated by a technical necessity for operating the service.

Single client: Clarify the constraints for multiple clients per user

The current protocol specification assumes that each user has a single client. However, this
assumption is inconsistent throughout the specification, as some sections still consider the possibility
of multiple clients per user. This inconsistency stems from the fact that a previous version of the
protocol supported multiclient functionality. Phoenix has indicated that future updates may
reintroduce multiclient support through potential enhancements to the MLS standard, such as "virtual
clients" [10]. We recommend maintaining consistency in the specification by enforcing the one-client-
per-user model and clarifying that multiclient support may be added in future updates.
Additionally, the STRIDE assessment showed that users can retrieve the set of clients without
restriction. In a future multiclient scenario where the server allows this without any access controls,
an attacker could repeatedly query this information, mapping out the user's devices or identities, and
potentially leading to a privacy breach. This functionality would expose a user's set of clients to
unauthorized parties, revealing the number of devices in use. An attacker could exploit this to profile
users, track device usage, or link anonymous accounts to a known individual. This would pose a
significant privacy risk, especially in environments where anonymity is crucial.

Key transparency: Reflect other products' developments

We suggest revising the "Transparency" column in the messaging apps comparison table, reflecting
recent updates for WhatsApp and iMessage. Specifically, WhatsApp announced the implementation
of key transparency in an engineering post in April 2023 [11]. Similarly, Apple announced iMessage
contact key verification [12], signaling a shift towards key transparency. It would be prudent to amend
the table entries for both apps to depict their latest security improvements accurately. These
adjustments will ensure a more current and comprehensive comparison.

Phoenix Architecture Review Public, Page 36 of 39

8.3 Security posture

Post-compromise security: Let users deactivate their accounts

Messaging platforms often face threats from state actors that may force users to surrender their
credentials or access to an authenticated client, compromising the account's security. A possible
solution could be a mechanism to deactivate accounts, which can be activated after such events. This
would secure the account further without compromising message confidentiality or privacy. Advanced
alternatives like pre-made tokens for account disabling, designated revocation users, or a revocation
list would further enhance user protection.

Secret keys: Guide the storage of and analyze the leak of private or secret key material

The specification references various private and secret keys including the AS credential key material,
the OPAQUE key material, and the privacy pass key material. For some of these keys, like the AS
credential key material, it suggests protection measures such as keeping them "offline or in an HSM".
However, for others like the privacy pass key material, no guidance is provided. Recommendations
should include a risk assessment of the potential consequences of unprotected keys. For instance, if
privacy pass keys are compromised, it simplifies an attacker's ability to make calls to the server,
thereby easing enumeration.

Patents: Choose cryptographic primitives and schemes by patent-free algorithms

We suggest incorporating an additional criterion in the list of requirements to ensure the
cryptographic primitive and scheme are patent-free. Such a strategy will guarantee unrestricted
implementation, distribution, and future development of cryptographic algorithms or schemes. By
clarifying this aspect early on, potential legal or financial roadblocks can be avoided, thereby
promoting wider protocol adoption.

Phoenix Architecture Review Public, Page 37 of 39

9 Bibliography

[1] Phoenix, "Protocol specification," [Online].
Available: https://docs.phnx.im/.

[2] IETF, "RFC9420," [Online].
Available: https://www.rfc-editor.org/rfc/rfc9420.html.

[3] O. t. fund, "Open tech fund," [Online].
Available: https://www.opentech.fund/.

[4] Phoenix, "Implementation of Phoenix home-server," [Online].
Available: https://github.com/phnx-im/infra/.

[5] Wikipedia, "STRIDE Model," [Online].
Available: https://en.wikipedia.org/wiki/STRIDE_model.

[6] Phoenix, "PR 32 - Phoenix documentation," [Online].
Available: https://github.com/phnx-im/docs/pull/32.

[7] Phoenix, "PR 26 - Phoenix documentation," [Online].
Available: https://github.com/phnx-im/docs/pull/26.

[8] Phoenix, "PR 25 - Phoenix documentation," [Online].
Available: https://github.com/phnx-im/docs/pull/25.

[9] Tor, "Tor project," [Online].
Available: https://www.torproject.org/.

[10] IETF, "Memo Virtual clients MLS," [Online].
Available: https://www.ietf.org/archive/id/draft-kohbrok-mls-virtual-clients-00.html.

[11] Whatsapp, "Key transparency engineering post," [Online].
Available: https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/.

[12] Apple, "Contact key verification engineering post," [Online].
Available: https://security.apple.com/blog/imessage-contact-key-verification.

Phoenix Architecture Review Public, Page 38 of 39

10 Appendix A: SRLabs technical services

Security Research Labs delivers extensive technical expertise to meet your security needs. Our
comprehensive services include software and hardware evaluation, penetration testing, red team
testing, incident response, and reverse engineering. We aim to equip your organization with the
security knowledge essential for achieving your objectives.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing
on our employees' decades of experience in developing and securing a wide variety of applications.
Our work includes design and architecture reviews, data flow and threat modeling, and code analysis
with targeted fuzzing to find exploitable issues.

BLOCKCHAIN SECURITY ASSESSMENTS We offer specialized security assessments for blockchain
technologies, focusing on the unique challenges posed by decentralized systems. Our services include
smart contract audits, consensus mechanism evaluations, and vulnerability assessments specific to
blockchain infrastructure. Leveraging our deep understanding of blockchain technology, we ensure
your decentralized applications and networks are secure and robust.

POLKADOT ECOSYSTEM SECURITY We provide comprehensive security services tailored to the
Polkadot ecosystem, including parachains, relay chains, and cross-chain communication protocols.
Our expertise covers runtime misconfiguration detection, benchmarking validation, cryptographic
implementation reviews, and XCM exploitation prevention. Our goal is to help you maintain a secure
and resilient Polkadot environment, safeguarding your network against potential threats.

TELCO SECURITY We deliver specialized security assessments for telecommunications networks,
addressing the unique challenges of securing large-scale and critical communication infrastructures.
Our services encompass vulnerability assessments, secure network architecture reviews, and protocol
analysis. With a deep understanding of telco environments, we ensure robust protection against cyber
threats, helping maintain the integrity and availability of your telecommunications services.

DEVICE TESTING Our comprehensive device testing services cover a wide range of hardware, from IoT
devices and embedded systems to consumer electronics and industrial controls. We perform rigorous
security evaluations, including firmware analysis, penetration testing, and hardware-level
assessments, to identify vulnerabilities and ensure your devices meet the highest security standards.
Our goal is to safeguard your hardware against potential attacks and operational failures.

CODE AUDITING We provide in-depth code auditing services to identify and mitigate security
vulnerabilities within your software. Our approach includes thorough manual reviews, automated
static analysis, and targeted fuzzing to uncover critical issues such as logic flaws, insecure coding
practices, and exploitable vulnerabilities. By leveraging our expertise in secure software development,
we help you enhance the security and reliability of your codebase, ensuring robust protection against
potential threats.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of
sophisticated attackers. We follow a formal penetration testing methodology that emphasizes
repeatable, actionable results that give your team a sense of the overall security posture of your
organization.

Phoenix Architecture Review Public, Page 39 of 39

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration
tests based on our code-assisted methodology, allowing us to find deeper vulnerabilities, logic flaws,
and fuzzing targets than a black-box test would reveal. This gives your team a stronger assurance that
the significant security-impacting flaws have been found and corrected.

SECURITY DEVELOPMENT LIFECYCLE CONSULTING We guide organizations through the Security
Development Lifecycle to integrate security at every phase of software development. Our services
include secure coding training, threat modelling, security design reviews, and automated security
testing implementation. By embedding security practices into your development processes, we help
you proactively identify and mitigate vulnerabilities, ensuring robust and secure software delivery
from inception to deployment.

REVERSE ENGINEERING We assist clients with reverse engineering efforts not associated with
malware or incident response. We also provide expertise in investigations and litigation by acting as
experts in cases of suspected intellectual property theft.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor
designs, embedded systems, and mobile devices via consumer-facing end products over to core
networking equipment that powers Internet backbones.

VULNERABILITY PRIORITIZATION We streamline vulnerability information processing by consolidating
data from compliance checks, audit findings, penetration tests, and red team insights. Our
prioritization and automation strategies ensure that the most critical vulnerabilities are addressed
promptly, enhancing your organization's security posture. By systematically categorizing and
prioritizing risks, we help you focus on the most impactful threats, ensuring efficient and effective
remediation efforts.

SECURITY MATURITY REVIEW We conduct comprehensive security maturity reviews to evaluate your
organization's current security practices and identify areas for improvement. Our assessments cover
a wide range of criteria, including policy development, risk management, incident response, and
security awareness. By benchmarking against industry standards and best practices, we provide
actionable insights and recommendations to enhance your overall security posture and guide your
organization toward achieving higher levels of security maturity.

SECURITY TEAM INCUBATION We provide comprehensive support for building security teams for
new, large-scale IT ventures. From Day 1, our ramp-up program offers essential security advisory and
assurance, helping you establish a robust security foundation. With our proven track record in securing
billion-dollar investments and launching secure telco networks globally, we ensure your new
enterprise is protected against cyber threats from the start.

HACKING INCIDENT SUPPORT We offer immediate and comprehensive support in the event of a
hacking incident, providing expert analysis, containment, and remediation. Our services include
detailed forensics, malware analysis, and root cause determination, along with actionable
recommendations to prevent future incidents. With our rapid response and deep expertise, we help
you mitigate damage, recover swiftly, and strengthen your defenses against potential threats.

