Assessment Report

Introduction

During December 2023 a review was conducted of three mobile applications.
Please note that this review was purposefully brief, the reviewers were given an
aggressive timeline to meet so there are many cases where a total understanding
of functionality was not possible.

This involved initial exploration reverse engineering of the following three Android
APKs:

* Eitaa (v6.3.7, SHA256:
fo9dcd28ddb923d85e44c7f9ef7dec011763a7985e23e877da34feda7d27994¢9)

* Rubika (v3.5.7, SHA256:
f9102e5f0ca3a35b681d19455f8a10e9caa16d2622ac799adb5ba2660f6d8678)

* Bale (v9.10.35, SHA256:
5b778885affbbf1fbd55457582a5d8730eb767bc1971f50cbc44837346532178)

Each of these apps contain messaging functionality, and the main objective of the
review was to determine whether public claims that these apps use end-to-end
encryption (E2EE) for user to user messaging could be verified. A secondary goal (if
time allowed) was to report obvious and notable security/privacy concerns for
users of the apps; more work may be done on this topic in the future.

For the purposes of this review, E2EE is defined as a system whereby only the
sender and the receiver of messages between devices are able to read their
contents. Third parties, including the application server, are unable to read or
modify the data since they don't have the key.

In summary, the authors of this report did not find evidence of modern E2EE
functionality between the end users in any of the three apps in scope for review.
While the apps tended to connect to servers using the HTTPS protocol for network
traffic transport, there was no E2EE protecting users against eavesdropping by the
server. Additionally, several privacy and platform-level concerns were noted with
these apps.

Eitaa was largely a clone of Telegram with the E2EE secret chat feature disabled.

Rubika contained numerous components, and all of them sent data using custom
cryptography that had significant weaknesses and was not E2EE.

Bale was obfuscated and the reviewers are therefore less certain about E2EE
functionality, but no recognized protocols for performing E2EE were found.

This review was limited to reverse engineering of the provided APKs, and the
applications were not run or dynamically analyzed. The majority of the reverse
engineering was performed using JADX.

If more in-depth analysis is needed the review team suggests working to overcome
the operational challenges to ensure that the apps can be dynamically analyzed.
Intercepting all requests made by the apps would allow a greater and more
efficient understanding of the normal operation of the apps, which could lead to
finding additional security and privacy concerns. Further, this would enable the
team to gain a clearer picture on Bale which was obfuscated and therefore difficult
to reverse engineer compared to the other apps.

Eitaa (E2EE)
Summary

The Eitaa application was largely built on top of open source Telegram code. By
default, Telegram chats are not end-to-end encrypted, the MTProto protocol only
encrypts data from the client to the server. To use end-to-end message encryption
in Telegram, a user has to explicitly start a new secret chat. However, as confirmed
by a point of contact who was able to run the app, the Eitaa application did not
contain an option for secret chats, and secret chats were explicitly not supported.
No additional encryption functionality had been added, therefore all messages sent
by Eitaa users can be intercepted, read, and modified by the Eitaa server.

Backend Connections

The main changes to the Telegram source occurred in the
ireitaa.tgnet.ConnectionsManager class. The purpose behind these changes
appeared to be to wrap the Telegram protocols inside HTTPS requests to send to a
custom list of datacenters run by Eitaa operators.

public void fillDatacenters() {
if (this.datacenters.size() == 0) {
if (this.isTestBackend == 0) {

DataCenter dataCenter = new DataCenter(1l);

this.datacenters.put(Integer.valueOf(dataCenter.datacenterId),
dataCenter);

ArraylList arrayList = new ArraylList();
arrayList.add("alzheimer.eitaa.com");

arrayList.add("fateme.eitaa.com");

arrayList.add("ghasem.eitaa.com");
arrayList.add("mohsen.eitaa.com");
arraylList.add("hossein.eitaa.com");
arrayList.add("ghasem.eitaa.ir")
arrayList.add("mohsen.eitaa.ir");

arrayList.add("hossein.eitaa.ir");

arrayList.add("armita.eitaa.com");
arraylList.add("majid.eitaa.com");
arrayList.add("mostafa.eitaa.com");
arrayList.add("alireza.eitaa.com");

arrayList.add("hosna.eitaa.com");

arraylList.add("armita.eitaa.ir");
arrayList.add("majid.eitaa.ir");
arrayList.add("mostafa.eitaa.ir");
arrayList.add("alireza.eitaa.ir");

arrayList.add("hosna.eitaa.ir");

dataCenter2.addAddressAndPort("dev.eitaa.com", 443, 0);
dataCenter2.addAddressAndPort("dev.eitaa.com", 443, 2);
dataCenter2.addAddressAndPort("dev.eitaa.com", 443, 4);

It is presumed that the servers listed are running a Telegram-compatible backend
server which first unwraps the payloads from the HTTP requests.
ireitaa.helper.http.HelperHttp contained a simple class for sending HTTP requests.
Line 355 of ireitaa.tgnet.DataCenter instantiated this class:

public synchronized HelperHttp getGenericConnection() {
if (this.connection == null || this.createNewConnection) {

this.createNewConnection = false;

this.connection = new HelperHttp(getCurrentAddress(0),
getCurrentPort(0), "/eitaa/index.php");

}

return this.connection;

getGenericConnection() was called by sendMessagesToTransport() in
ireitaa.tgnet.ConnectionsManager. sendMessagesToTransport() is a major custom
function that all Eitaa messages pass through. It is too long to reproduce here, but
worth noting that it wraps custom TL_clientRequest objects, with the following fields:

public class TLRPC$TL clientRequest extends TLObject {
public boolean appPause;

public int buildVersion;

public int flags;

public boolean foregreoundConnection;

public String imei;

public boolean isData;

public boolean isWifi;

public String lang;

public int layer;
public byte[] packed data;
public String token;

The imei field is discussed further under the “Eitaa (Additional Concerns)” section,
as it is more of a privacy concern than relating to end-to-end encryption.

Authentication

The Telegram authentication had been modified in minor ways. The code for two
step verification was slightly modified from open source versions of Telegram with
a new TL_twoStep_sendCode class added, but in practice appeared to work largely
the same: using an auth code, password, and recovery email address.

The message payloads had been modified to add a token value. If the client did not
have a token, or had an expired token, the refreshToken() method was run from
ireitaa.tgnet.ConnectionsManager. This sent a TL_AppInfo object to the server, which
contained the following fields:

public String app _version;
public int build version;
public String device model;
public String lang code;
public String sign = ""

public String system version;

In response to this information about a user’s device, the server returned a new
token, which was sent with all future requests. The purpose of this additional token
was not clear considering it was additional to the existing Telegram authentication.

Eitaa (Additional Concerns)

The following section contains privacy concerns that were noted while inspecting
Eitaa. These concerns are in addition to the lack of end-to-end encryption and
involve functionality that has been added to the original Telegram source code.

IMEI

In the TL_clientRequest objects sent with each message to the server, the app
attempts to include the user’s International Mobile Equipment Identity (IMEI). Since
Android 10, accessing the IMEI requires READ_PRIVILEGED_PHONE_STATE, so
unless Eitaa is installed as a privileged app (e.g. a device owner app), it should not
be able to access the IMEI on more recent Android versions. If the IMEI could not
be fetched, a random value was used:

this.imei = preferences.getString("imei", UUID.randomUUID().toString());

URL Whitelists

Another addition to the Telegram code was a URL whitelist for the in-app browser.
URLs were fetched by the main thread of ir.eitaa.tgnet.ConnectionsManager, calling
the saveUrlIWhiteList() method in ireitaa.messenger.MessagesController. This saved the
whitelisted URLs locally to the application data directory, encrypted using AES-ECB .
If, when browsing to a URL, it was not matched in the whitelist, then it was encoded
and appended to “https://search.eitaa.com/?url=" first. If the URL was whitelisted,
the normal Telegram in-app browser behavior occurred. This is a possible vector for
tracking the browsing behavior of users in the app.

Platform Level Concerns

Since Eitaa was heavily based on Telegram, the team compared the Android
manifest of Eitaa to that of a recent Telegram open source version (10.2.9). There
were only minor differences between the two, and the review team did not note
any significant new permissions or exported receivers added to Eitaa, except a new
PaymentsActivity, with an exported receiver with the eitaapay Android scheme:

<intent-filter android:icon="@drawable/ic launcher"
android:priority="1">

<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.BROWSABLE" />

<category android:name="android.intent.category.DEFAULT"/>

<data android:scheme="eitaapay"/>

</intent-filter>

The purpose of this activity appeared to be to scan barcodes or open URLs that
request payment, but the payments themselves occurred online and not using in-
app code.

For completeness, below are counts of exported resources:

* Exported Activities: 7
* Exported Services: 6

* Exported Receivers: 5
* Exported Providers: 1

The team briefly attempted to locate the implementations of these resources in the
code but ultimately did not identify any obvious malicious code paths stemming
from them; rather, they pertained to copied Telegram code as the team had
anticipated.

The following privacy-relevant permissions were noted, however these were all
present in the Telegram manifest and the team was unable to confirm whether they
were used by additional first party code within the time allotted for this review:

<uses-permission android:name="android.permission.READ EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.GET ACCOUNTS"/>
<uses-permission android:name="android.permission.READ CONTACTS"/>
<uses-permission android:name="android.permission.WRITE CONTACTS"/>
<uses-permission android:name="android.permission.MANAGE ACCOUNTS"/>
<uses-permission android:name="android.permission.READ PROFILE"/>
<uses-permission android:name="android.permission.WRITE SYNC SETTINGS"/>
<uses-permission android:name="android.permission.READ SYNC SETTINGS"/>
<uses-permission android:name="android.permission.AUTHENTICATE ACCOUNTS"/>
looa]

<uses-permission android:name="android.permission.REQUEST INSTALL PACKAGES"/>

<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>

The application was also found to enable backups, allowing an attacker with
physical access to the device to download all private application data:

<application android:allowAudioPlaybackCapture="true" android:allowBackup="true"

android:
android:
android:
android:
android:
android:
android:
android:
android:

appComponentFactory="androidx.core.app.CoreComponentFactory"
hardwareAccelerated="@bool/useHardwareAcceleration"
icon="@drawable/ic_launcher" android:label="@string/AppName"
largeHeap="true"
manageSpaceActivity="ir.eitaa.ui.ExternalActionActivity"
name="ir.eitaa.messenger.ApplicationLoader"
requestlLegacyExternalStorage="true" android:supportsRtl="false"
theme="@style/Theme.TMessages.Start"
usesCleartextTraffic="true">

Rubika (E2EE)
Summary

The Rubika app used message encryption, but it was not end-to-end, and in fact the
encryption key was effectively transmitted to the backend server together with
each encrypted payload. The encryption used in the Rubika application contained a
number of significant flaws and provided no defense against an attacker that could
read network traffic from the application.

The Rubika app contained multiple separate components including several different
messenger services, however all of them appeared to eventually encapsulate
messages in the same way. The app included a messaging service in
iraaap.messengercore, another suite of services containing additional messenger
code in irresanehl.iptv.model.MessengerInput, and core libraries in androidMessenger
which included a message proxy which understood the Telegram TLRPC message
protocol.

To understand the lack of end-to-end encryption, this analysis begins with the
authentication process and works towards the message sending and receiving
functionality.

Auth

Authentication was performed in iraaap.messengercore.LoginUtils, and was based
on a modified version of Telegram authentication. First, a code was requested for
the user’'s phone number, and the phone number and the confirmation code
received over SMS were then used to sign in. Additionally, Rubika generated an RSA
public key (or fetched an existing one from storage) which was sent to the server
when signing in:

private void generateKeyIfNeeded(KeyValueStorageHelper keyValueStorageHelper,
CoreEncryptionHelper coreEncryptionHelper) {

if (getPrivateKey(keyValueStorageHelper) == null) {
KeyPair generateKey = coreEncryptionHelper.generateKey();
keyValueStorageHelper.setPublicKey(generateKey.getPublic());

keyValueStorageHelper.setPrivateKey(generateKey.getPrivate());

coreEncryptionHelper.generateKey() was located in
androidMessenger.KeyEncryptionHelper.CoreEncryptionHelperImpl, where it was noted

that the RSA keys were 1024-bit, which is considered a small keysize and has not
been recommended for use by NIST since 2010:

public KeyPair generateKey() {

try {

KeyPairGenerator keyPairGenerator =
KeyPairGenerator.getInstance("RSA");

keyPairGenerator.initialize(1024);

After being generated, the user’s public key and private keys were stored using the
iraaap.messengercore.KeyValueStorageHelper class:

public void setPublicKey(PublicKey publicKey) {
this.publicKey = publicKey;
if (this.keyEncryptionHelper == null) {
return;

}

this.keyValueStorage.setString(Key.publicKey.name(),
this.keyEncryptionHelper.toString(publicKey));

Internally, keyValueStorage was implemented using Android Shared Preferences, in
the file androidMessenger.keyValueStorageHelper.KeyValueStorageImpl. It is bad
practice to store app secrets in shared preferences, since they are not encrypted,
and can be accessed on rooted devices.

As the final part of the authentication flow, iraaap.messengercore.LoginUtils received
an auth token from the server. This auth token was asymmetrically encrypted using
the public key provided by the user client, so the client then used their private key
to decrypt the auth token, and store it in the key value helper.

str4 = coreEncryptionHelper2.decryptRSA(signInOutput.auth,
LoginUtils.this.getPrivateKey(keyValueStorageHelper));

This auth token was the output of the authentication procedure and used to
identify the client in future exchanges with the server. However, it was unexpectedly
also used as the key for message encryption, as described below.

Message Encryption

getMessageUtils().sendMessage() was the function used to send messages. It was
called from iraaap.messengercore.CoreMainClassImpl and was passed the user’s
auth token as the first argument:

public int callSendMessage(final String str, final ChatType chatType, Message
message, boolean z, final LoadListener<SendMessageResult> loadListener) {
if (str != null && chatType != null) {

final SendMessageException checkMessagelnput =
checkMessageInput(message);

return
getMessageUtils().sendMessage (getKeyValueStorageHelper().getAuth(), str,
chatType, message, z, getNetworkHelper(), getRubinoUtils(), new
LoadListener<SendMessageOutput>() {

sendMessage() called sendMessagelnner() in iraaap.messengercore.MessageUtils.
Higher-level network methods that sent data to the server backend were found in
iraaap.messengercore.network.NetworkHelperImpl. All these methods called
this.network.sendV50rV6() to handle the communication, for instance see
sendMessage() at line 461:

@Override // ir.aaap.messengercore.network.NetworkHelper

public int sendMessage(String str, SendMessageInput sendMessagelnput,
RetryObject retryObject, NetworkHelper.ResponselListener<SendMessageOutput>
responseListener) throws Exception {

return this.network.sendV50rV6(str, "sendMessage",
toJson(sendMessagelnput), retryObject, getListenerV5(responselListener,
SendMessageOutput.class));

The sendV50rV6() method was in androidMessenger.network.NetworkImpl, which
called getSendObservable():

public int sendV50rV6(String str, String str2, JSONObject jSONObject,
RetryObject retryObject, Network.ResponselListener responselListener) throws
Exception {

return sendInner(getSendObservable(true, false, str, str2, jSONObject),
str, null, str2, jSONObject, retryObject, responselListener);

The third parameter to getSendObservable() was the auth token originally passed
into this chain of methods via getKeyValueStorageHelper().getAuth():

private Observable<Response<ResponseBody>> getSendObservable(boolean z, boolean
z2, String str, String str2, JSONObject jSONObject) throws IOException {

JSONObject jsonInput = getJsonInput(z, z2, str, str2, jSONObject);

return
ApiRequestMessangerRx.getInstance().send(jsonInput).subscribeOn(Schedulers.m801lio());

get/soninput() was also in androidMessenger.network.NetworkImpl:

private JSONObject getJsonInput(boolean z, boolean z2, String str, String str2,
JSONObject jSONObject) {

NetworkHelper.VersionEncryptionHelper versionEncryptionHelper;

MessangerInput2 messangerInput2 = new MessangerInput2(str);

return messangerInput2.getJsonObjectV6(str2, jSONObject,
this.versionEncryptionHelper.getPrivateKey());

get/sonObjectV6() first called get/sonObjectV5(), in
androidMessenger.model.MessangerInput2:

public JSONObject getJsonObjectV5(String str, JSONObject jSONObject) {
this.dataJson = jSONObject;
this.method = str;
JSONObject jSONObject2 = new JSONObject();
try {
String str2 = this.auth;
if (str2 !'= null) {
jSONObject2.put("auth", str2);
} else {
jSONObject2.put("tmp session", this.tmp session);
}
jSONObject2.put("api version", 5);
makeDataV5() ;
jSONObject2.put("data enc", this.data enc);
} catch (JSONException e) {
MyLog.handleException(e);

return jSONObject2;

In get/sonObjectV6(), the message was additionally signed with the user’s RSA
private key. Note that in the V5 format, the auth token was added directly to the
message body. In the V6 format, the auth token was instead first processed by
EncryptionHelper.encodeChars():

public JSONObject getJsonObjectV6(String str, JSONObject jSONObject, PrivateKey
privateKey) {

JSONObject jsonObjectV5 = getJsonObjectV5(str, jSONObject);
try {

jsonObjectV5.put("api version", 6);

String str2 = this.auth;

if (str2 '= null) {

jsonObjectV5.put("auth", EncryptionHelper.encodeChars(str2));

jsonObjectV5.put(“sign", EncryptionHelper.signRsa(privateKey,
jsonObjectV5.getString("data enc")));

}

} catch (JSONException e) {
e.printStackTrace();

} catch (Exception e2) {
e2.printStackTrace();

}

return jsonObjectV5;

encodeChars() performed simple linear shifts to the auth token characters, which
were easily reversible:

public static String encodeChars(String str) {
if (str == null) {
return null;
}
char[] charArray = str.toCharArray();
String str2 = BuildConfig.FLAVOR;
for (char ¢ : charArray) {
if (Character.isUpperCase(c)) {
c = ((29 - (c - 65)) % 26) + 65;
} else if (Character.isLowerCase(c)) {
c=((32 - (c - 97)) % 26) + 97;

} else if (Character.isDigit(c)) {
c = ((13 - (c - 48)) % 10) + 48;
}

str2 = str2 + Character.toString((char) c);

}

return str2;

makeDataV5() was the function that built JSON objects to be sent to the server. It
encrypted the JSON message payload using EncryptionHelper.encryptAuth() and the
user’s auth token as the second argument:

public void makeDataV5() {
String str;
if (this.data _enc != null) {
return;
}
String str2 = this.auth;
if (str2 !'= null && !str2.isEmpty()) {
str = this.auth;
} else {
String str3 = this.tmp session;
str = (str3 == null || str3.isEmpty()) ? null : this.tmp session;
}
if (str != null) {
JSONObject jSONObject = new JSONObject();
try {
jSONObject.put("input", this.dataJson);
jSONObject.put("client", this.client.getClientJsonObject());
jSONObject.put("method", this.method);
} catch (JSONException e) {
e.printStackTrace();
}
this.client = null;
this.method = null;
this.api version = "5";

try {
this.data enc = EncryptionHelper.encryptAuth(jSONObject.toString(),
str);

this.data = null;

this.datalson = null;

} catch (Exception unused) {

}

The encryptAuth() function was in androidMessenger.network.EncryptionHelper, and
used AES CBC encryption on the data:

public static String encryptAuth(String str, String str2) {

try {
byte[] makeKey = makeKey(str2);
IvParameterSpec ivParameterSpec = new IvParameterSpec(ivBytes);
SecretKeySpec secretKeySpec = new SecretKeySpec(makeKey, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS7PADDING");
cipher.init(1, secretKeySpec, ivParameterSpec);
byte[] doFinal = cipher.doFinal(str.getBytes());
MyLog.m4128e("LogAPIMessenger", str);
return Base64.encodeToString(doFinal, 0);

} catch (Exception unused) {

return null;

The makeKey() method in androidMessenger.network.EncryptionHelper performed
easily reversible linear transformations on the auth code to turn it into an AES
encryption key:

static byte[] makeKey(String str) {
String substring = str.substring(0, 8);

String substring2 = str.substring(8, 16);

String str2 = str.substring(16, 24) + substring + str.substring(24, 32) +
substring2;

StringBuilder sb = new StringBuilder(str2);
for (int 1 = 0; i < sb.length(); i++) {
if (sb.charAt(i) >= '0' && sb.charAt(i) <= '9') {
sb.setCharAt(i, (char) ((((str2.charAt(i) - '0') + 5) % 10) + 48));
}
if (sb.charAt(i) >= 'a' && sb.charAt(i) <= 'z') {
sb.setCharAt(i, (char) ((((str2.charAt(i) - 'a') + 9) % 26) + 97));

return sb.toString().getBytes();

Note also that the initialization vector used in the AES encryption used a static valid
of all zeroes. AES-CBC encryption with a static initialization vector is vulnerable to
multiple attacks that can recover plaintext.

private static final byte[] ivBytes = {0, 6, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, O,
0, 0, 0};

However, the obvious attack against the encryption used in V6 messages would be
to get the original value of the auth token by reversing the operation of
EncryptionHelper.encodeChars() on the “auth” field in intercepted messages. Then
encode this using the same operation as makeKey() to retrieve the AES key. Using
this key, the full message payloads in the “data_enc” field could be decrypted. In
previous message versions, this process is even more straightforward as the auth
token is sent directly.

Rubika (Additional Concerns)
Platform Level Concerns

The team analyzed the application manifest to map the attack surface of the
application and identify potentially malicious permissions and exposed services
that could be abused to compromise the privacy and security of users. The
following list contains the total number of each type of resource that was found to
be shared with other applications:

* Exported Activities: 3
» Exported Services: 15
* Exported Receivers: 4
* Exported Providers: 1

The team briefly attempted to locate the implementations of these resources in the
code but ultimately did not identify any obvious malicious code paths stemming
from them.

The team noted the following permissions which could be used to undermine the
security and privacy of the device:

<uses-permission android:name="android.permission.ACCESS COARSE LOCATION"/>
<uses-permission android:name="android.permission.ACCESS FINE LOCATION"/>
<uses-permission android:name="android.permission.READ EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.READ CONTACTS"/>

<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>

The team also noted that the application permitted cleartext traffic, but there was
no network security configuration file present. This results in cleartext HTTP traffic
being permitted to all domains

<application android:allowBackup="false"
android:appComponentFactory="androidx.core.app.CoreComponentFactory"
[...]" android:usesCleartextTraffic="true">

The team noticed the package
com.facebook.stetho.dumpapp.plugins.FilesDumperPlugin

public void dump(DumperContext dumperContext) throws DumpException {

Iterator<String> it = dumperContext.getArgsAsList().iterator();

String nextOptionalArg = ArgsHelper.nextOptionalArg(it,
BuildConfig.FLAVOR);

if ("1ls".equals(nextOptionalArg)) {
doLs (dumperContext.getStdout());

} else if ("tree".equals(nextOptionalArg)) {
doTree(dumperContext.getStdout());

} else if ("download".equals(nextOptionalArg)) {
doDownload (dumperContext.getStdout(), it);

} else {
doUsage (dumperContext.getStdout());
if (BuildConfig.FLAVOR.equals(nextOptionalArg)) {

return;

}

throw new DumpUsageException("Unknown command: " + nextOptionalArg);

The team was unable to locate all potential uses of the Stetho library within Rubika
due to time constraints, however two instances were found to be used in the
classes ir.resanehi.iptv.apiMessanger.ApiRequestMessanger and
irresaneh.iptv.apiMessanger.ApiRequestMessangerRx, where Stetho hooks HTTP
requests to the backend. One example, shown below, involves attaching a Stetho
interceptor to all requests when initializing the REST API service:

public void setRestApiService() {

HttpLoggingMessanger httpLoggingMessanger = new
HttpLoggingMessanger (this.currentAccount);

if (MyLog.isDebugAble) {

httpLoggingMessanger.setlLevel (HttpLoggingInterceptor.Level.BODY);
} else {

httpLoggingMessanger.setlLevel (HttpLoggingInterceptor.Level.NONE) ;

}

OkHttpClient.Builder addNetworkInterceptor = new
OkHttpClient.Builder().addInterceptor(new Interceptor() { // from class:
ir.resanehl.iptv.apiMessanger.ApiRequestMessanger.1

@Override // okhttp3.Interceptor
public Response intercept(Interceptor.Chain chain) throws IOException {
ApiCacheObject apiCacheObject;
String str;
I0OException iOException;
Response response;

String str2;

Request build =
chain.request().newBuilder().addHeader (HttpHeaders.CONTENT TYPE,
"application/json").build();

CacheDatabaseHelper cacheDatabaseHelper =
CacheDatabaseHelper.getInstance(((BaseController)
ApiRequestMessanger.this).currentAccount);

String appVersion =
UpdateUtils.getAppVersion(ApplicationLoader.applicationContext);

Buffer buffer = new Buffer();

if (build.body() != null) {
build.body().writeTo(buffer);

}

Charset charset = ApiRequestMessanger.UTF8;

String str3 = null;

MediaType contentType = build.body() != null ?
build.body().contentType() : null;

boolean canCache =
ApiRequestMessanger.this.canCache(build.url().toString());

if (contentType == null || contentType.subtype() == null || !
contentType.subtype().equals("json")) {

apiCacheObject = null;
str = BuildConfig.FLAVOR;
} else {
charset = contentType.charset(ApiRequestMessanger.UTF8);
String readString = buffer.readString(charset);

if (canCache) {

try {
apiCacheObject = cacheDatabaseHelper.getApiCache("-",
readString, appVersion);

} catch (Exception unused) {
str = readString;
apiCacheObject = null;
}
} else {

apiCacheObject = null;
}
str = readString;

}

if (canCache && apiCacheObject !'= null && apiCacheObject.output !=
null && apiCacheObject.expiredTime.longValue() >
System.currentTimeMillis()) {

return new
Response.Builder().request(build).protocol(Protocol.HTTP 2).message(BuildConfig.FLAVOR).
json"), apiCacheObject.output)).addHeader("fromCache", BuildConfig.FLAVOR).build();

}
try {
response = chain.proceed(build);

i0Exception = null;

} catch (IOException e) {
i0Exception = e;

response = null;

}
if (response == null || !response.isSuccessful()) {
DataCenterManager.getInstance().increastApiCouner();
ApiRequestMessanger.this.setRestApiService();
) ¢ if (apiCacheObject != null && (str2 = apiCacheObject.output) !=

return new
Response.Builder().request(build).protocol(Protocol.HTTP 2).message(BuildConfig.FLAVOR).
json"), str2)).addHeader("fromCache", BuildConfig.FLAVOR) .build();

} else if (iOException == null) {
return response;
} else {

throw i0Exception;

}
if (canCache) {

BufferedSource source = response.body().source();

source.request(Long.MAX VALUE);

String readString2 =
source.buffer().clone().readString(charset);

try {
str3 = ((MessangerQOutput)
ApplicationLoader.getGson().fromJson(readString2, (Class<Object>)
MessangerOutput.class)).cache;

} catch (Exception unused2) {
}
Long 1 = OL;
if (str3 != null) {
try {
1 = Long.valueOf(Long.parseLong(str3));

} catch (Exception unused3) {

}

cacheDatabaseHelper.addOrUpdateApiCache (new
ApiCacheObject("-", str, appVersion, readString2,
Long.valueOf(System.currentTimeMillis() + (l.longValue() * 1000))));

}
}

return response;

}
}) .addInterceptor(httpLoggingMessanger) .addNetworkInterceptor (new
StethoInterceptor());

TimeUnit timeUnit = TimeUnit.SECONDS;

restApiService = (RestApiMessanger) new
Retrofit.Builder() .baseUrl(DataCenterManager.getInstance().getApiUrl()).addConverterFact
timeUnit).readTimeout (25L, timeUnit).writeTimeout(25L, timeUnit).build()).build().create

Under the correct conditions, this could allow real time interception and
modification of any network traffic bound for the REST API. The team was unable to

confirm statically whether this library was used in any malicious contexts, but
future work, including dynamic analysis, could increase certainty.

Bale (E2EE)

The Bale application was obfuscated, most likely using Proguard, and therefore
significantly more difficult to reverse engineer than the other applications. Without
performing dynamic analysis against the application, the review team were unable
to make definitive statements about the use of end-to-end encryption, but some
guesses are possible based on evidence that was recovered from the obfuscated
package within the review timeframe.

While various encryption functionality was found in Bale, the team did not locate
any obfuscated code that actually appeared to be performing end-to-end
messaging encryption using a recognized protocol (such as the Signal protocol).

Communication with the server occurred over Google Protobufs, and the names of
these survived in the obfuscated application. For instance,
MessagingOuterClass$RequestSendMessage appeared to be used to send a message
to other users. This class contained a “peer” field with the PeersStruct type, as did
many classes in the application:

public final class MessagingOuterClass$RequestSendMessage extends
GeneratedMessagelLite<MessagingOuterClass$RequestSendMessage, a> implements
com.google.protobuf.gl {

[yl
private PeersStruct$0utExPeer exPeer ;
private Int32Value isOnlyForUser ;
private MessagingStruct$Message message ;
private PeersStruct$OutPeer peer ;
private MessagingStruct$MessageOutReference quotedMessageReference ;

private long rid ;

The peer class was defined at ai.bale.proto.PeersStruct$Peer and had “id” and “type”
fields:

public final class PeersStruct$Peer extends GeneratedMessagelLite<PeersStruct$Peer,
a> implements ecO {

loool
private int id ;

private int type ;

The type enum was found at ai.bale.proto.fc0, where there was a
“PeerType_ENCRYPTEDPRIVATE" type:

public enum fcO implements 00.c {
PeerType UNKNOWN(O),
PeerType PRIVATE(1),
PeerType GROUP(2),
PeerType ENCRYPTEDPRIVATE(3),
UNRECOGNIZED(-1);

However, in all usages of this enum that the review team found, the
“PeerType_ENCRYPTEDPRIVATE” type was never set. Only “fc0.PeerType_PRIVATE”
and “fc0.PeerType_GROUP” were explicitly set by builders of Peer objects (for
instance in PeersStruct$OutPeer m1).

Similarly, messages could be of several different types, see the following from
ai.bale.proto.MessagingStruct$Message, and only one type appeared to support
encryption:

public enum b {
BANK MESSAGE(1),
BINARY MESSAGE(2),
DELETED MESSAGE(3),
DOCUMENT MESSAGE (4),
EMPTY MESSAGE(5),
JSON MESSAGE(7),
NASIM ENCRYPTED MESSAGE(8),
ORDER_MESSAGE (9) ,
PURCHASE MESSAGE(10),
SERVICE MESSAGE(11),
STICKER MESSAGE(12),
TEMPLATE MESSAGE(13),
TEMPLATE MESSAGE _RESPONSE(14),
TEXT MESSAGE(15),
UNSUPPORTED MESSAGE(16),
GIFT PACKET MESSAGE(17),
PREMIUM MESSAGE(18),
NEW PREMIUM MESSAGE(19),
BOUGHT PREMIUM MESSAGE(20),
ADVERTISEMENT MESSAGE(21),
POLL MESSAGE(22),
CROWD _FUNDING MESSAGE(23),
ANIMATED STICKER MESSAGE(24),

STORY (160),
TRAIT NOT SET(0);

The type of message called NasimEncryptedMessage was defined at
ai.bale.proto.MessagingStruct$NasimEncryptedMessage:

public final class MessagingStruct$NasimEncryptedMessage extends
GeneratedMessagelLite<MessagingStruct$NasimEncryptedMessage, a> implements
com.google.protobuf.gl {

[l
private com.google.protobuf.j key ;
private int messagelength ;
private com.google.protobuf.j message ;

private com.google.protobuf.j signature ;

The review team could not determine from source code analysis under what
circumstances Nasim Encrypted Messages were used, and how they were
constructed. Further time spent on dynamic analysis would help determine
whether these messages were actually used in practice (as opposed to standard
MessagingStruct$Message unencrypted messages) and could give insights into how
the keys and signatures are formed.

Bale (Additional Concerns)
Card Encryption

In a separate location (ar.a) to the potential messaging encryption noted earlier,
AES encryption was discovered with a static, hardcoded key:

public final String a(String str) {
try {

byte[] bytes2 = "J@NcRfUjXn2r5u8x".getBytes(forName2);
v.g(bytes2, "this as java.lang.String).getBytes(charset)");
SecretKeySpec secretKeySpec = new SecretKeySpec(bytes2, "AES");
Cipher cipher = Cipher.getInstance("AES");

cipher.init(2, secretKeySpec, ivParameterSpec);

byte[] doFinal = cipher.doFinal(Base64.decode(str, 0));

The usage of this form of easily reversible encryption occurred in the context of
encrypting user’s credit card data and their Nasim “Shaparak” Public Key in a local
preferences file.

Location

During authentication, an AuthStruct$AuthSession payload was sent from the app to
the server containing the following fields:

public final class AuthStruct$AuthSession extends
GeneratedMessagelLite<AuthStruct$AuthSession, a> implements gb {

ool
private int appId ;
private int authHolder ;
private int authTime_;
private int id ;
private CollectionsStruct$Int64Value lastActivityAt ;
private CollectionsStruct$StringValue lastIpAddress ;
private DoubleValue latitude ;
private DoubleValue longitude ;

private String appTitle = "";

private String deviceTitle = "";

private String authLocation = "";

The sending of user location via latitude and longitude values during each
authentication could be considered another privacy concern.

Platform Level Concerns

The team analyzed the application manifest to map the attack surface of the
application and identify potentially malicious permissions and exposed services
that could be abused to compromise the privacy and security of users. The
following list contains the total number of each type of resource that was found to
be shared with other applications:

* Exported Activities: 2
* Exported Services: 7

* Exported Receivers: 6
* Exported Providers: 1

The team briefly attempted to locate the implementations of these resources in the
code but ultimately did not identify any obvious malicious code paths stemming
from them.

The team noted the following permissions which could be used to undermine the
security and privacy of the device:

<uses-permission android:name="android.permission.READ EXTERNAL STORAGE"/>

<uses-permission android:name="android.permission.READ PRIVILEGED PHONE STATE"/>

<uses-permission android:maxSdkVersion="29"
android:name="android.permission.WRITE EXTERNAL STORAGE"/>

<uses-permission android:name="android.permission.MANAGE ACCOUNTS"/>
<uses-permission android:name="android.permission.AUTHENTICATE ACCOUNTS"/>
<uses-permission android:name="android.permission.GET ACCOUNTS"/>
<uses-permission android:name="android.permission.READ PROFILE"/>
<uses-permission android:name="android.permission.USE CREDENTIALS"/>

.

<uses-permission android:name="android.permission.REQUEST INSTALL PACKAGES"/>

The permission READ_PRIVILEGED_PHONE_STATE is usually reserved for trusted
system applications and it would allow the app to query unique device identifiers,
such as the IMEI, that would normally be unavailable to low privilege apps for
privacy reasons. This could facilitate tracking users’ activity, but it was unclear from

static analysis whether it would be functional in practice, as the permission should
be ignored for non-system apps per the Android documentation.

The team analyzed the Network Security Configuration and found that cleartext
HTTP traffic was permitted to the following hosts:

<?xml version="1.0" encoding="utf-8"7>

<network-security-config>

<domain-config cleartextTrafficPermitted="true">

<domain
<domain
<domain
<domain
<domain
<domain
<domain

<domain

includeSubdomains="true">192.168.0.233</domain>
includeSubdomains="true">192.168.43.221</domain>
includeSubdomains="true">127.0.0.1</domain>
includeSubdomains="true">10.0.2.2</domain>
includeSubdomains="true">ep.bale.tel</domain>
includeSubdomains="true">ep.bale.ai</domain>
includeSubdomains="true">hash.bale.ai</domain>

includeSubdomains="true">185.13.231.71</domain>

</domain-config>

</network-security-config>

The team was unable to identify traffic that was sent to the hosts above due to time
constraints on the assessment as well as obfuscation present in the APK.

Lastly, the application was found to use Google Firebase for backend persistence at
the following URL:

https://najva-1104.firebaseio.com

