Phase 2

Introduction

In October 2024, a privacy and security review was conducted for three Android
messaging apps, namely, Bale, Eitaa, and Rubika. This recent Phase 2 assessment
followed the Phase 1 review which was conducted in December 2023. The Phase 1
review focused on using static analysis and reverse engineering to evaluate
encryption methods and platform-level privacy concerns. As in Phase 1, the project
time was limited and did not allow for a total understanding of all app
functionalities, therefore the assessment was focused to a list of primary concerns.

This Phase 2 assessment used dynamic analysis to validate the findings from Phase
1 and to explore the following concerns:

* Interoperability: The apps interoperate allowing users of different apps to
message each other. Are communications between the target applications
secure? What type of encryption is being used to enable this interoperability?

* Unexpected Transmission of Private Data: Do the apps activate any sensors (e.g.,
a user’'s microphone or camera) or send any user data (e.g., location,
identifier, phone numbers, or other personally identifiable information) in an
unexpected way?

* Changes from Telegram: Two of the apps rely heavily on Telegram code. How
closely do the applications’ implementations match that of the official
Telegram app, and what, if any, significant changes have been made?

* Use of AL: Rubika is marketed as the Iranian version of WeChat, advertised as a
preferred “all-in-one” multi-service application in Iran. The application’s public-
facing documentation claims that the application uses artificial intelligence
(AI) for image analysis, e.g., to detect women who are not wearing a hijab. Is
there any evidence this process occurs on client devices?

* Security Review: Do the applications contain design or implementation
vulnerabilities that could be exploited by mobile application hackers?

* Encryption: What types of encryption are used in the apps overall?

APKs
The following application APKs were investigated in this assessment:

* Eitaa (v6.4.2, SHA256:
943d25d2cb842ee91e404922c9eeb7433158ba14ee5da821de3870cd92676731)

* Rubika (v3.7.5, SHA256:
9f4cad46bbcec994063376f18cc3c3f7adcdf7c41fd5de9eabaafc4c050d4da6d)

* Bale (v9.41.5, SHA256:
9bb94f028bb34e97123b26ca7baefd10c7191fab1b3cb6ecbd1f4928a75bc3f8f)

A summary of the findings for each objective is described below.
Interoperability

All three apps could exchange messages with each other through a backend
process called MXB Message Exchange. Static analysis revealed that MXB
supported interoperability between Bale, Eitaa, Rubika, IGap, Gap, Soroush, and
Chavosh messengers. To use this interoperability, users first had to activate the
MXB feature in their messaging app’s Settings menu. Once enabled, an MXB
Register Request was sent from the app to the app’s normal backend server. This
registration request included the user’s phone number, nickname, and avatar.

If a second user, using a different messaging app, wanted to message the first user
(who was one of their Android contacts), the second user could tap a button on the
contacts screen of their app to connect with the first user. This action sent an MXB
GetUserRegisterInfo request, containing the first user’'s phone number, to the
second user’'s messaging app backend server. In response, the messaging app’s
backend returned the first user’s information and a list of apps they used. This
process created a virtual MXB user on the second user’s app, allowing them to
message the first user.

The apps did not communicate with the MXB servers directly, and therefore, the
exact functioning of the MXB interoperability was obfuscated. Further, the
assessment team could not fully test the feature dynamically, being limited to a
single valid account on the apps. However, based on the gathered information, the
assessment team believes it likely that when a virtual MXB user was messaged,
extra associated information about the virtual MXB user instructed the messaging
app’'s backend to forward the sender’s message, decrypted and in cleartext, to an
MXB server. The MXB server would then presumably route the message to the
correct destination app backend, from where it would be forwarded to a user’s app,
with the sending user being created as a virtual MXB user on the recipient’s app.

Unexpected Transmission of Private Data

None of the apps employed end-to-end encryption, and therefore, all chat
conversations and information about participants (e.g., their names, phone
numbers, and contacts) were readable by the applications’ backend servers. In the
case of Eitaa, unsent draft messages were additionally reported to the application’s
backend server.

The assessment team did not note sensor-based cases of unexpected data sent,
such as unexpected enabling of a user’s microphone or camera.

Additionally, in all three apps, when users clicked URLs in messages that were sent
to them, they were redirected to the application’s backend server with the original
URL in the query string. This would effectively allow the servers to monitor which
websites were viewed by users within the app.

Changes from Telegram

Eitaa in particular was a fork of Telegram with few changes or additional features.
The main differences with Telegram were found to be:

* Networking code was modified so that Telegram RPC messages were sent
over HTTPS to Iranian servers rather than using Telegram'’s servers.

* The ability to have secret chats was removed. Telegram offers the option for
end-to-end encrypted messaging, but no chats were end-to-end encrypted in
Eitaa.

* The option to interoperate with other Iranian messengers was added, as
described above in the interoperability section regarding MXB.

* The trends feature was added as a way to explore popular public channels.

Rubika included the Telegram libraries in the source code under the package name
org.rbmain.tgnet; however, it was not observed being used in any of the chat
functionality during dynamic analysis. Instead, Rubika used the package
iraaap.messengercore to implement chat functionality, which used JSON over HTTPS
with a superficial layer of custom encryption to obfuscate traffic. It is possible that
Telegram'’s source code was being used for other functionality in the application,
such as video/voice calls, but the assessment team was unable to confirm this via
dynamic analysis.

Bale was not based on Telegram source code.
Use of AI

The assessment team found no evidence of Al being used to analyze message
content, including photos, on the client device. As the backend servers were able to
read the messages from all three apps, the assessment team believes that content
filtering was occurring on the backend.

Security Review

The assessment team was unable to conduct a through security review of the
applications in this phase of the assessment, primarily due to time constraints and
challenges related to reverse engineering Bale’s messaging protocol and defeating

its obfuscation. General application security concerns for each of the applications
were discussed previously in the Phase 1 report.

Encryption

All three apps employed different forms of client-server encryption, but none had
end-to-end encryption enabled to keep conversations between participants
protected from the backend servers. Eitaa transmitted Telegram objects over
HTTPS rather than the encrypted MTProto protocol. Rubika used a superficial
custom AES encryption scheme that essentially transmitted the decryption key with
each message. Bale was based on the Actor Messaging Platform’s MTProto
encryption that used AES encryption with a shared secret generated between the
client and server.

Eitaa
Description

The Eitaa application did not make use of static or runtime obfuscation (with the
exception of SSL Certificate Pinning, which was trivial to bypass), so the assessment
team was able to inspect Eitaa’s application traffic and use of the Android OS
framework to confirm findings identified in Phase 1. In summary, all significant
findings from the exploratory analysis were confirmed, along with additional
privacy concerns including a lack of end-to-end encryption, transmission of URLs
and unsent draft messages to Eitaa’s servers, and harvesting of contact data in the
application background.

While Eitaa did have the ability to access a user’s microphone, camera, and GPS
location data, the assessment team did not observe any inappropriate or
unexpected attempts to access them, and modern versions of Android make it
difficult to access these systems without a user noticing. Rather, the main privacy
concern for this application appeared to be the fact that all user message content
and browsing activity within the app were visible to Eitaa backend servers.

SSL Pinning

Rudimentary SSL Certificate Pinning was found to be in place, initially preventing
the application from being intercepted by an intermediate proxy such as Burp
Suite. The assessment team was able to bypass this mechanism using dynamic
instrumentation with the Frida tool and the following public script:

function DisableSSLPinning() {
var ArraylList = Java.use("java.util.ArrayList");
var TrustManagerImpl = Java.use('com.android.org.conscrypt.TrustManagerImpl');
// checkTrustedRecursive() recursively builds certificate chains until a valid
chain is found or all possible paths are exhausted
TrustManagerImpl.checkTrustedRecursive.implementation = function(certs,
ocspData, tlsSctData, host, clientAuth, untrustedChain, trustAnchorChain, used) {
// return empty trusted chain
return ArrayList.$new();

};

if (Java.available) {
Java.perform(DisableSSLPinning);
} else {

console.log("[!] Java VM is not available!");

After attaching to the Eitaa process with the Frida CLI tool and executing the above
script, the assessment team was able to proxy application traffic for further testing.

Encryption

After bypassing SSL Certificate Pinning using dynamic instrumentation techniques,
the assessment team was able to capture and inspect traffic as it flowed between
the Eitaa client application and servers. The application used the open-source
Telegram protocol to handle messaging; however, the Telegram source code was
modified to send all messages to the /eitaa/index.php endpoint on various Eitaa
web servers. The following snippet shows a redacted HTTP request that was sent
when a user sent a chat message on the platform. Note that the message content
was transmitted to the server without any additional encryption beyond TLS:

POST https://sadegh.eitaa.ir/eitaa/index.php HTTP/1.1
Content-Type: text/stream

Content-Length: <redacted>

host: sadegh.eitaa.ir

Connection: Keep-Alive

User-Agent: okhttp/3.12.13

Unexpected Transmission of Private Data

The assessment team developed custom Frida scripts along with using an
intercepting proxy to monitor the application for unexpected capture and
transmission of private data, including use of a user’s microphone and camera,
clipboard access, and access to a user’s contact information and location
information. Of these, only Android contact information was found to be
transmitted periodically in the background, as shown in the following redacted
HTTP request:

POST https://sadegh.eitaa.ir/eitaa/index.php HTTP/1.1
Content-Type: text/stream
Content-Length: <redacted>

host: sadegh.eitaa.ir

Connection: Keep-Alive

User-Agent: okhttp/3.12.13

....<redacted identifier>........ <redacted session
identifier>............... <redacted contact phone
number>........ John....Smith............ <redacted contact phone
number>........ Jane...... Doe..........

Additionally, when searching for new contacts to add, the contact information was
sent to the server in cleartext as the user typed:

POST /eitaa/index.php HTTP/2
Content-Type: text/stream
Content-Length: 112

Host: mostafa.eitaa.ir

Connection: Keep-Alive
Accept-Encoding: gzip, deflate, br
User-Agent: okhttp/3.12.13

....<redacted identifier>...<redacted session identifier>............. I'm searching

for a contact..............

A notable finding was that draft messages that were typed but never actually sent
were transmitted to the server at somewhat random intervals. For example, the
following redacted HTTP request was observed some time after typing a message
in a private chat but with the user never hitting the send button:

POST https://alireza.eitaa.com/eitaa/index.php HTTP/1.1
Content-Type: text/stream

Content-Length: <redacted>

host: alireza.eitaa.com

Connection: Keep-Alive

User-Agent: okhttp/3.12.13

This feature was most likely related to Telegram'’s ability to save draft messages
between devices. However, it also enabled the Eitaa server to see unfinished user
messages as they were being typed and before they were sent.

Eitaa was also found to detect URLs in chat messages and send them to the server
when users clicked links that were sent to them. The server redirected the user to
the site, as shown in the following redacted HTTP request and response.

Request:

GET https://search.eitaa.com/?url=https%3A%2F%2F<redacted>.com HTTP/1.1
host: search.eitaa.com

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: <redacted>

X-Requested-With: org.chromium.webview shell

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Response:

HTTP/1.1 302 Found

Server: nginx

Date: <redacted>

Content-Type: text/html; charset=UTF-8
Connection: keep-alive

Cache-Control: private, must-revalidate
Location: https://<redacted>.com

pragma: no-cache

Frida Scripts

The following script was used to hook Android framework calls to relevant camera
and microphone methods to alert the assessment team if the sensors were being
accessed unexpectedly:

Java.perform(function() {

var audioRecord = Java.use("android.media.AudioRecord");

audioRecord.startRecording.overload("android.media.MediaSyncEvent").implementation
= function (v) {

console.log("startRecording(MediaSyncEvent) called");

audioRecord.startRecording.overload("android.media.MediaSyncEvent").call(this, v);
I
audioRecord.startRecording.overload().implementation = function (v) {
console.log("startRecording() called");
audioRecord.startRecording.overload().call(this, v);
I
var camera = Java.use("android.hardware.Camera");
camera.takePicture.overload("android.hardware.Camera$ShutterCallback",
"android.hardware.Camera$PictureCallback",
"android.hardware.Camera$PictureCallback",
"android.hardware.Camera$PictureCallback").implementation = function (v) {
console.log("camera.takePicture() called");
b
camera.takePicture.overload("android.hardware.Camera$ShutterCallback",
"android.hardware.Camera$PictureCallback",
"android.hardware.Camera$PictureCallback").implementation = function (v) {
console.log("camera.takePicture() called");
I
3

The following script was used to hook attempts to access the device’s location data:

Java.perform(function() {

var locationManager = Java.use("android.location.LocationManager");

locationManager.getCurrentLocation.overload("java.lang.String",
"android.location.LocationRequest", "android.os.CancellationSignal",
"java.util.concurrent.Executor", "java.util.function.Consumer").implementation =
function (v) {

console.log("getCurrentLocation called");

I

locationManager.getCurrentLocation.overload("java.lang.String",
"android.os.CancellationSignal", "java.util.concurrent.Executor",
"java.util.function.Consumer").implementation = function (v) {

console.log("getCurrentLocation called");

};

locationManager.getCurrentLocation.overload('android.location.LocationRequest’,

'android.os.CancellationSignal', 'java.util.concurrent.Executor',
'java.util.function.Consumer').implementation = function (v) {

console.log("getCurrentLocation called");

}
locationManager.requestLocationUpdates.overload("java.lang.String", "long",
"float", "android.location.LocationListener").implementation = function (v) {
console.log("requestLocationUpdates called");
}

var mapHelper = Java.use("ir.eitaa.helper.MapHelper");

mapHelper.startLocationTracking.implementation = function (v) {
console.log("startLocationTracking called");

b

mapHelper.stopLocationTracking.implementation = function (v) {
console.log("stopLocationTracking called");

b

1)

The following script was used to hook attempts to access the Clipboard, e.qg., for
sniffing confidential data such as passwords:

Java.perform(function() {
var clip = Java.use("android.content.ClipData$Item");
clip.coerceToText.implementation = function (v) {
console.log("read text from clipboard: " + v);

};

Rubika
Description

The Rubika application contained a large amount of functionality, though the
assessment team focused primarily on privacy concerns related to messaging.
Unlike Eitaa, Rubika employed a custom encryption mechanism on top of SSL
Certificate Pinning to obfuscate traffic being sent to the backend server. However,
the encryption was largely superficial as the AES key used for encrypting messages
was transmitted to the server along with the messages themselves. Details about
this encryption mechanism and how the assessment team was able to bypass it are
discussed below in the Encryption section.

In summary, Rubika servers had the capability to intercept and read all messages
and contact data sent through the app. The assessment team used dynamic
instrumentation techniques to attempt to identify other privacy concerns, such as
inappropriate or unexpected use of a user’s camera, microphone, and GPS location
data, but no suspicious attempts to access these sensors were observed at the time
of assessment.

SSL Pinning

Rudimentary SSL Certificate Pinning was found to be in place, initially preventing
the application from being intercepted by an intermediate proxy such as Burp
Suite. The assessment team was able to bypass this mechanism using dynamic
instrumentation with the Frida tool and the following public script:

function DisableSSLPinning() {
var ArraylList = Java.use("java.util.ArrayList");
var TrustManagerImpl = Java.use('com.android.org.conscrypt.TrustManagerImpl');
// checkTrustedRecursive() recursively builds certificate chains until a valid
chain is found or all possible paths are exhausted
TrustManagerImpl.checkTrustedRecursive.implementation = function(certs,
ocspData, tlsSctData, host, clientAuth, untrustedChain, trustAnchorChain, used) {
// return empty trusted chain
return ArrayList.$new();

};

if (Java.available) {
Java.perform(DisableSSLPinning);
} else {

console.log("[!] Java VM is not available!");

After attaching to the Rubika process with the Frida CLI tool and executing the
above script, the assessment team was able to proxy application traffic for further
testing.

Encryption

The assessment team was able to confirm all significant findings from the initial
exploration of the apps in Phase 1, including that no actual end-to-end encryption
was being used for private messages or channels. Instead, messages were
encrypted using AES-CBC encryption with a key that was obfuscated and
transmitted in the body of all relevant requests to the server. The following HTTP
request snippet shows the structure of a normal chat request being sent to the
Rubika servers:

POST https://messenger<redacted>.iranlms.ir/ HTTP/1.1
Content-Type: application/json; charset=utf-8
Content-Length: <redacted>

host: messenger<redacted>.iranlms.ir

Connection: Keep-Alive

User-Agent: okhttp/3.12.12

{"auth":"<redacted>","is background":false, "api version":6,"data _enc":"<redacted>"}

The auth JSON field contained the obfuscated AES key, and the data_enc field
contained the base64-encoded encrypted message content. The assessment team
developed the following Python script to decode the key and use it to decrypt the
plaintext message content:

import base64

import json

from Crypto.Cipher import AES
from Crypto.Util.Padding import *

def decodeAuthKey(key):
decoded = ""
for k in key:

if k.islower():

c = ((32 - (ord(k) - 97)) % 26) + 97

decoded += chr(c)
return decoded

def makeKey(auth):
key = ""
str2 = auth[16:24] + auth[0:8] + auth[24:32] + auth[8:16]
for s in str2:
if s.islower():
¢ = (((ord(s) - 97) +9) % 26) + 97
key += chr(c)

return key
msg_json = json.loads(msg)

decoded auth = decodeAuthKey(msg json["auth"])

data enc = base64.b64decode(msg json["data enc"])

aes iv = b"\x00" * 16

aes_key = makeKey(decoded auth).encode()
cipher = AES.new(aes key, AES.MODE CBC, aes iv)
out = unpad(cipher.decrypt(data enc), 16).decode()

print(out)

Processing the request with the script above produced the following output,
confirming that the Rubika messaging servers had the capability to intercept and
read all messages sent within the app:

{"input":
{"is mute":false,"object guid":"<redacted>","rnd":<redacted>, "text":"<PLAINTEXT
CHAT MESSAGE>"},"client":

{"app_name":"Main","app version":"3.7.5","lang_code":"fa", "package":"app.rbmain.a","temp code":"-

Unexpected Transmission of Private Data

As expected, Rubika generally transmitted any content entered into the app by the
user to various servers. In addition to message content, which included message

text, attachments, and voice message recordings, contact details were also
transmitted, as shown in the decrypted code snippet below:

{"input":{"address book items":
[{"first name":"<redacted>","last name":"<redacted>", "phone":"<redacted>"}1},"client":

{"app_name":"Main","app version":"3.7.5","lang_code":"fa","package":"app.rbmain.a","temp code":"-

Like Eitaa, Rubika was found to redirect users to a third-party site when users
clicked on links in chat messages. The URL the user attempted to visit was
obfuscated within the g URL query parameter, as in the following HTTP request.

Request:

GET https://url.rubika.ir/?g=<redacted>&k=<redacted> HTTP/1.1
host: url.rubika.ir

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: <redacted>

X-Requested-With: org.chromium.webview shell

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Accept-Language: en-US,en;q=0.9

As shown in the response below, the application read the URL from the g
parameter and set a target_url cookie containing the original value.

Response:

HTTP/1.1 302 Found

Server: nginx/1.26.1

Date: <redacted>
Content-Type: text/html
Content-Length: ©
Connection: keep-alive
Location: /index.html

Vary: Accept, Cookie, origin
Allow: GET, HEAD, OPTIONS
X-Frame-Options: DENY
X-Content-Type-0Options: nosniff

Referrer-Policy: same-origin
Set-Cookie: target url="<redacted URL from original link>"; expires=<redacted> Max-
Age=86400; Path=/

X-Forwarded-For: <redacted>

The application was also found to store the user’s chat history and other account-
related information locally on the device in the file /data/data/app.rbmain.a/
databases/RubikaMessenger_0. This file was a SQLite database containing all chat
messages and detailed contact information, including first name, last name, date of
birth, phone number, and author GUIDs. There was no immediate privacy risk
associated with storing this information on the client device; however, it could be
recovered if a malicious actor were to gain access to the device.

Frida Scripts

The assessment team leveraged all Frida scripts described in the Eijtaa section of
the report to monitor attempts by the application to access components such as
the camera, microphone, or GPS location data. No suspicious attempts to access
these sensors were observed at the time of assessment.

Bale
Description

In the static analysis of Phase 1, the assessment team gained the least insight into
Bale due to its use of obfuscation. Unlike Eitaa and Rubika, the Bale APK uses
Android’s r8 minification which makes reverse engineering the application’s source
code significantly more difficult. There were therefore no concrete findings in
Phase 1. During this Phase 2 assessment, the assessment team was able to use
dynamic analysis to overcome this obstacle and understand how Bale messaging
works.

Even with dynamic analysis the Bale application still posed several challenges.
Notably, the assessment team found that HTTP requests were used for only a small
portion of Bale functionality, while most network traffic used a custom protocol.
The protocol was found to be MTProtoV2, which is not end-to-end encrypted. This
protocol and the assessment team'’s evaluation of it is discussed below in the
Network Protocol section.

SSL Pinning

After authenticating to Bale, a list of hashes was downloaded from http://
hash.bale.ai/hashes-android-json. These hashes were found to be consumed by an
unusual Java pinning library eu.geekplace.javapinning, which was built into the
app. It was possible to bypass this pinning by calculating the public key SHA256
hash of the assessment team'’s proxy certificate. Bale HTTPS traffic could be
intercepted by adding that SHA256 value for each host in the file where the list was
stored at /data/data/ir.nasim/shared_prefs/ssl_pins.ini.xml.

The assessment team found that only a small portion of application functionality
used HTTP requests, mainly for the following functionalities:

* A list of hashes for SSL pinning was downloaded from http://hash.bale.ai/
hashes-android-json

* Images were downloaded from https://siloo.bale.ai

* Hashes of static resources were downloaded from https://tooshle.bale.ai

* Dynamic configuration values were downloaded from https://assets.bale.ai/
configs.json

Network Protocol

Most Bale traffic was sent to port 443 of the host arbaeen.ble.ir. While port 443 was
used, the traffic was not sent over the TLS protocol; rather, a custom TCP protocol

https://developer.android.com/build/shrink-code
https://github.com/Flowdalic/java-pinning

with encrypted payloads was in use. The assessment team used Frida (see script
below) to trace the callbacks that opened this socket and discovered that the
protocol in use was MTProto V2 from the Actor Messaging Platform, rather than
MTProto from Telegram.

The Actor Messaging Platform is an abandoned instant messaging app that was
built by ex-Telegram developers. The last public commit was in December 2016.
Bale is largely a fork of this platform, with some notable changes.

One interesting change is that Actor double encrypts messages, using both the AES
algorithm and the Russia-developed Kuznyechik block cipher in sequence. At the
time of assessment, Bale removed the Kuznyechik block cipher and only used AES
encryption for data payloads.

The MTProto V2 protocol is described in the following documentation: https://
github.com/actorapp/actor-platform/tree/master/docs/protocol.

Encryption

On first start up of Bale, the app performed a Diffie-Hellman key exchange with the
Bale server to generate a shared auth_master_key. An auth_id value was created
based on the first eight bytes of the SHA256 hash of this master key. These values
were saved in the file /data/data/irnasim/shared_prefs/properties.ini. In future
exchanges with the server, the auth_id value was sent to identify the current user
and to determine the shared encryption key for the server to use.

Message encryption and decryption in Bale used the AES-128 algorithm with a
random initialization vector transmitted in plaintext and a 16-byte slice of the auth
master key as the encryption key.

Overall, the use of a shared symmetric key meant the server was able to observe
and log all messages sent between Bale users. The Actor Messaging Platform was
noted to contain end-to-end encryption functionality, but the Bale app was
confirmed to not use this functionality and the Actor Messaging Platform end-to-
end encryption code appeared to be removed from Bale. The use of an abandoned
custom protocol rather than industry-standard TLS for protecting user message
confidentiality means that user messages may also be at risk from third-party
adversaries who can discover protocol flaws; however, a protocol review was not in
scope for this assessment.

Additional Functionality

While Bale was built on the Actor Messaging Platform, a large portion of custom
functionality had been added which used Protobufs sent over the MTProtoV2

https://github.com/actorapp/actor-platform
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/actor-sdk/sdk-core/core/core-shared/src/main/java/im/actor/core/network/mtp/actors/ManagerActor.java#L332
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/actor-sdk/sdk-core/core/core-shared/src/main/java/im/actor/core/network/api/AuthKeyActor.java#L207
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/actor-sdk/sdk-core/core/core-shared/src/main/java/im/actor/core/network/mtp/actors/ManagerActor.java#L87
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/actor-server/actor-frontend/src/main/java/im/actor/crypto/ActorProtoKey.java#L20
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/actor-server/actor-frontend/src/main/java/im/actor/crypto/ActorProtoKey.java#L20
https://github.com/actorapp/actor-platform/blob/5123c1584757c6eeea0ed2a0e7e043629871a0c6/docs/e2e/getting-started.md
https://protobuf.dev/

protocol. The assessment team used dynamic instrumentation tools to log the
Protobufs sent while browsing the app’s other features, which include Flow, a
stories-like feature, and Services, which offers a number of third-party integrations,
such as with payment services, business chatbots, and ChatGPT. The assessment
team did not notice any particularly unusual behaviors here, though testing of
financial functionality was out of scope of the assessment.

Unexpected Transmission of Private Data

The assessment team did not observe any unexpected attempts where Bale
accessed a user’s microphone, camera, or GPS location data, and modern versions
of Android make it difficult to access these systems without a user noticing. In
Phase 1 a structure was noticed which appeared to report user location to the Bale
backend, but the assessment team did not find this data to be transmitted during
dynamic testing. Similar to the other apps, the main privacy concern for Bale was
that all user message content and browsing activity within the app was visible to
the backend servers.

Frida Script

The script shown below was used to dynamically instrument the app and observe
the data sent to arbaeen.ble.ir:443:

function encodeHex(byteArray) {
const HexClass = Java.use('org.apache.commons.codec.binary.Hex");
const StringClass = Java.use('java.lang.String');
const hexChars = HexClass.encodeHex(byteArray);

return StringClass.$new(hexChars).toString();

function protoReflect(argd, argl) {
if (arg0.$className.index0f("ai.bale.proto") !== -1) {
console.log("==== PROTO REFLECT");
console.log(argl);

console.log(arg0.toString());

Java.perform(function x(){
console.log("Inside java perform function");

var my class = Java.use("ir.nasim.rb2");

my class.b.overload('[B"',

COﬂSOle.lOg(":::: DECRYPT") ;

console.log("IV + encodeHex(iv));

var out = this.b(iv, data);

console.log("Data: + encodeHex(out))

return out;

my class.d.overload('[B"',

COﬂSOle.lOg(":::: ENCRYPT") :

console.log("IV + encodeHex(iv));
console.log("Data:

return this.d(iv, data);

my class = Java.use("ir.nasim.rpd");
my class.a.overload('java.lang.String',
'com.google.protobuf.p@',
arg2, arg3){
console.log("==== RPD");
console.log(arg0);

return this.a(arg@, argl, arg2, arg3);

my class = Java.use("ir.nasim.jx7");
my class.f.overload('java.lang.Object',
function(arg0d, argl){
protoReflect(argd, argl);

return this.f(arg0@, argl);

my class.g.overload('java.lang.Object',
function(arg0d, argl){
protoReflect(argd, argl);
return this.g(arg0@, argl);

my class.h.overload('java.lang.Object',
function(arg0d, argl){
protoReflect(argd, argl);
return this.h(arg0@, argl);

'[B').implementation =

'[B').implementation =

function(iv, data){

function(iv, data){

" + encodeHex(data));

‘com.google.protobuf.p@’',

'java.lang.String').implementation

'java.lang.String').implementation

'java.lang.String').implementation

'ir.nasim.it3"').implementation = function(arg0®, argl,

my class.i.overload('java.lang.Object', 'java.lang.String').implementation =
function(arg0, argl){
protoReflect(argd, argl);

return this.i(arg0, argl);

	Phase 2
	Introduction
	Eitaa
	Description

	Rubika
	Description

	Bale
	Description

