
Web Application
Penetration Test Report

Open Technology Fund

V 1.0
Amsterdam, September 23rd, 2023
Confidential

Document Properties

Client Open Technology Fund

Title Web Application Penetration Test Report

Targets Hypha web application (subdomain, particularly the project components)
OTF Beta website (Wordpress)

Version 1.0

Pentester Stefan Vink

Authors Stefan Vink, Abhinav Mishra

Reviewed by Abhinav Mishra

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 September 13th, 2023 Stefan Vink Initial draft

0.2 September 14th, 2023 Stefan Vink Ready-to-Review

1.0 September 23rd, 2023 Abhinav Mishra Final Report

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 5

1.5 Results In A Nutshell 5

1.6 Summary of Findings 6

1.6.1 Findings by Threat Level 8

1.6.2 Findings by Type 8

1.7 Summary of Recommendations 9

2 Methodology 12
2.1 Planning 12

2.2 Risk Classification 12

3 Reconnaissance and Fingerprinting 14

4 Findings 15
4.1 OTF3-022 — Hypha - Insecure ACL on API Comments 15

4.2 OTF3-021 — Hypha - Session Expiry is 14 days. 17

4.3 OTF3-016 — Hypha - Improper Input Validation 18

4.4 OTF3-008 — Wordpress - 2FA disabled for admin user. 20

4.5 OTF3-005 — Wordpress - Wordpress username can be found through wp-json 22

4.6 OTF3-028 — Hypha - XSS in Wagtail 23

4.7 OTF3-027 — Hypha - Inclusion of external Google Translate script. 27

4.8 OTF3-026 — Hypha - Wagtail Documents can be downloaded without authentication. 28

4.9 OTF3-024 — Hypha - Missing CSP Header 30

4.10 OTF3-023 — Hypha - Backup Tokens after confirmation can still be seen. 31

4.11 OTF3-020 — Hypha - External images can be attached 33

4.12 OTF3-018 — Hypha - No anti automation 35

4.13 OTF3-017 — Hypha - Low privileged user able to Purge CDN and Cache 37

4.14 OTF3-015 — Hypha - User Enumeration with Email Address Change 38

4.15 OTF3-014 — General - CBC Ciphers used 39

4.16 OTF3-013 — Wordpress - WP Cron is enabled. 42

4.17 OTF3-012 — Wordpress - Hardcoded SMTP credentials 43

4.18 OTF3-010 — Wordpress - Disable File Edit in the UI 44

4.19 OTF3-007 — Wordpress - Post via Email 45

4.20 OTF3-006 — Wordpress - Version is exposed. 46

4.21 OTF3-004 — Wordpress - Exposed Management Interface 48

4.22 OTF3-003 — Wordpress - Missing CSP Header 50

4.23 OTF3-002 — Wordpress - Public access to Development and Test websites 51

4.24 OTF3-001 — Wordpress - ACL Hardening 52

5 Non-Findings 54
5.1 NF-025 — Hypha - Forms can be submitted without agreeing the terms 54

5.2 NF-019 — General - Retesting findings previous report 54

5.3 NF-011 — Wordpress - Anti Automation in Newsletter Signup 54

5.4 NF-009 — Wordpress - Xmlrpc is not enabled or accessible. 55

6 Future Work 56

7 Conclusion 57

Appendix 1 Testing team 58

Confidential

1 Executive Summary

1.1 Introduction

Between July 21, 2023 and September 13, 2023, Radically Open Security B.V. carried out a penetration test for Open

Technology Fund

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Hypha web application (subdomain, particularly the project components)

• OTF Beta website (Wordpress)

The scoped services are broken down as follows:

• Total effort: 11.5 days

1.3 Project objectives

ROS will perform a penetration test of the Hypha platform and the beta Open Tech Fund website with OTF in order

to assess the security of this. To do so ROS will access the internal network and guide OTF in attempting to find

vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between July 21, 2023 and September 13, 2023.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 High, 4 Moderate and 19 Low-severity issues.

The High severity issue OTF3-022 (page 15) would allow an authenticated low privileged user or higher, such as

partners, to see the comments of others. This could result in exposure of private information which when found could

have a high impact on the confidentiality of the application. The other issues found in the Hypha application were

Moderate and Low severity issues due to insecure session management (sessions remained valid for 14 days), improper

input validation that could result in Cross site scripting, cross domain inclusion of a Google Translate script, missing

Executive Summary 5

CSP header, backup 2FA tokens not properly protected, insufficient anti automation, user enumeration and several other

misconfigurations.

Pentesting the new Wordpress Hypha frontend part resulted in discovery of Moderate and Low severity issues. The WP

Cron feature was found to be active, config files have hardcoded SMTP credentials set, file editing is permitted through

the UI, 2FA is not enabled for the admin user, lack of CSP header, ACL hardening can be improved, "Post via Email"

is set up with standard server information, Wordpress version can easily be found, management interface is exposed,

user enumeration can be performed via wp-json and there is public access to the development and test websites while a

password is required for the beta website.

Note that Moderate and Low severity issues did not have a major immediate risk but when resolved would make it

harder for adversaries to succeed to launch attacks against the application, infrastructure and users.

At the end of this pentest we did conduct a retest as well. It was found that the High issue and many other issues were

resolved which is a good outcome. The finding status has been updated to reflect this.

1.6 Summary of Findings

ID Type Description Threat level

OTF3-022 Insecure ACL The API Comments functionality does not have the proper
ACL configured allowing other users such as applicants
and partners to see the comments of others.

High

OTF3-021 Improper Session
Management

Sessions remain active after a user closes the application
and remain valid for 14 days.

Moderate

OTF3-016 Improper Input
Validation

The application incorrectly validates input that can affect
the control flow or data flow of a program.

Moderate

OTF3-008 Insecure Password The admin account is not protected by Two-Factor-
Authentication (2FA).

Moderate

OTF3-005 Misconfiguration WordPress user details can be found through the wp-json
endpoint.

Moderate

OTF3-028 XSS Improper input validation in Wagtail CMS leads to multiple
XSS vulnerabilities across the frontend and backend.

Low

OTF3-027 Cross Domain Inclusion An external inclusion of the Google Translate script was
found in the response of requests.

Low

OTF3-026 Insecure ACL During the pentest we discovred that the Wagtail
Documents can be downloaded without authentication.

Low

OTF3-024 Missing Security
Header

The Hypha application does not use the Content Security
Policy header.

Low

OTF3-023 Insecure Password Backup Tokens shown during 2FA setup stay the same
and can be accessed by the user even after setup is
complete.

Low

OTF3-020 Misconfiguration External images can be embedded within several forms
throughout the application.

Low

6 Radically Open Security B.V.

Confidential

OTF3-018 Missing Anti-
Automation

The Apply form does not have proper Anti Automation
functionality implemented.

Low

OTF3-017 Insecure ACL Low privileged users are able to Purge CDN and Cache. Low

OTF3-015 User Enumeration Valid users can be found by abusing the Profile Change
Email address functionality.

Low

OTF3-014 TLS Misconfiguration The webserver allows obsolete Cipher Block Chaining
(CBC) encryption.

Low

OTF3-013 Misconfiguration The external WP-Cron appears to be enabled. Low

OTF3-012 Hardcoded Credentials The SMTP configuration including credentials was found
in the supplied source code.

Low

OTF3-010 Misconfiguration Wordpress backend files such as configuration and
templates can be edited using the UI.

Low

OTF3-007 Misconfiguration Default settings were found in the Post via Email
functionality.

Low

OTF3-006 Information Leak The Wordpress version is exposed. Low

OTF3-004 Exposed Management
Interface

Access to the websites Wordpress management portal
can be easily guessed which would allow public access to
the management interface login portal.

Low

OTF3-003 Missing Security
Header

The application fails to set an appropriate Content-
Security Policy header on some pages which could allow
attacks such as XSS and Clickjacking.

Low

OTF3-002 Insecure ACL The Development and Test websites lack password
protection allowing unauthorized access.

Low

OTF3-001 Insecure ACL Several directories and files are not properly hardened. Low

Executive Summary 7

1.6.1 Findings by Threat Level

79.2%

16.7%

4.2%

High (1)

Moderate (4)

Low (19)

1.6.2 Findings by Type

41.7%

8.3% 8.3%

20.8%

20.8%

Insecure acl (5)

Misconfiguration (5)

Insecure password (2)

Missing security header (2)

Other (10)

8 Radically Open Security B.V.

Confidential

1.7 Summary of Recommendations

ID Type Recommendation

OTF3-022 Insecure ACL Update the code to make sure that low privileged users such as applicants
and partners cannot read other clients comments.

OTF3-021 Improper Session
Management

• Reduce the default max session time to a lower value, e.g. 8 hours.
Also make it possible for administrators to configure this value in the
configuration file of the application.

• Set a maximum amount of active sessions per user. If possible only
allow one active session per user. Note that some applications require
the use of multiple devices (as they can be used on other devices such
as a mobile phone and laptop), which discounts allowing only one
active session as a solution. In this case the user could be shown a
session overview (with the time when session was created and the
kind of device it was created on) in case there are multiple active
sessions. The user should be able to select and invalidate any session
that should be deactivated.

OTF3-016 Improper Input
Validation

• Assume all input is malicious. Use an 'accept known good' input
validation strategy i.e. use a whitelist of acceptable inputs that strictly
conform to specifications. Reject any input that does not strictly
conform to specifications, or transform it into something that does.

• When performing input validation, consider all potentially relevant
properties, including length, type of input, the full range of acceptable
values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules.

• Do not rely exclusively on looking for malicious or malformed inputs
(i.e. do not rely on a blacklist). A blacklist is likely to miss at least one
undesirable input, especially if the code's environment changes. This
can give attackers enough room to bypass the intended validation.
However blacklists can be useful for detecting potential attacks
or determining which inputs are so malformed that they should be
rejected outright.

• For any security checks that are performed on the client side, ensure
that these checks are duplicated on the server side. Attackers can
bypass the client-side checks by modifying values after the checks
have been performed, or by changing the client to remove the client-
side checks entirely. Then these modified values would be submitted
to the server.

• Even though client-side checks provide minimal benefits with respect
to server-side security, they are still useful. First, they can support
intrusion detection. If the server receives input that should have
been rejected by the client, then it may be an indication of an attack.
Second, client-side error-checking can provide helpful feedback to
the user about the expectations for valid input. Third, there may be a
reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

• When your application combines data from multiple sources, perform
the validation after the sources have been combined. The individual
data elements may pass the validation step but violate the intended
restrictions after they have been combined. Inputs should be decoded

Executive Summary 9

and canonicalised to the application's current internal representation
before being validated.

• Make sure that your application does not inadvertently decode the
same input twice. Such errors could be used to bypass whitelist
schemes by introducing dangerous inputs after they have been
checked.

• Consider performing repeated canonicalisation until your input does
not change any more. This will avoid double-decoding and similar
scenarios, but it might inadvertently modify inputs that are allowed to
contain properly-encoded dangerous content.

OTF3-008 Insecure Password Add support for 2FA authentication.

OTF3-005 Misconfiguration The WordPress installation has the REST API /wp-json/wp/v2/publicly
accessible. It is recommend to disallow the public access, or disable the API
if it is not needed.

OTF3-028 XSS Implement proper input validation and output encoding to prevent XSS
attacks. More information can be found at: https://www.owasp.org/index.php/
Cross_Site_Scripting

OTF3-027 Cross Domain Inclusion Try to avoid (where possible) using cross-domain scripts. Include and host as
many scripts as possible on your own domain(s. This way, you keep control
over the source code, as well as referrer information.

OTF3-026 Insecure ACL Add authentication checks before downloading the document is allowed.

OTF3-024 Missing Security
Header

Note that X-XSS-Protection and X-Frame-Options headers are already set
in the response which helps to mitigate these kind of attacks. However, best
practice suggests to replace these headers for a CSP Header that blocks
these attacks.

OTF3-023 Insecure Password Make sure to follow the standard practice where backup tokens are only
shown to the user once, typically at the time of setting up 2FA. Implementing
proper access controls and logging around the viewing and usage of backup
tokens can further enhance the security and integrity of the authentication
process.

OTF3-020 Misconfiguration Disable external image uploads if possible. If images are needed, use the
application's existing internal upload feature.

OTF3-018 Missing Anti-
Automation

Apply an anti-automation on forms. One of the common ways to do it would
be implementing a Captcha (hCAPTCHA is very effective) on those pages
and only show and enforce the use of it after a certain amount of requests
per IP. Note that Cloudflare does have some protection against this but still it
did allow us to make more requests then should be preferred.

OTF3-017 Insecure ACL Verify whether the current user is allowed to access the requested resource
and deny access if this is not the case.

OTF3-015 User Enumeration • Set a timeout of 1 second (so based on the respones time an attacker
cannot conduct a timing attack to find out whether some processing
happens or not if an account exists or not)

• Mention in the message to the user that a confirmation mail is send
to the email address set. If the address already exists in the system
an email won't be send. If it does not exist an email would be send.
And only after confirming the email the address is updated in the email
field.

10 Radically Open Security B.V.

https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting

Confidential

OTF3-014 TLS Misconfiguration Disable the use of TLS CBC ciphers. De-prioritizing these ciphers can also
help minimize successful exploitation of real-world attacks. The attacker
typically cannot force the selection of a specific cipher and therefore can only
execute a CBC padding oracle attack if the client/server normally negotiates
a vulnerable cipher.

OTF3-013 Misconfiguration Add the variable DISABLE_WP_CRON to true in the file wp-config.php
and restrict access to the file wp-cron.php. In case the cron is used there
are other ways to run a cronjob. The alternative is to create in the system
a cronjob that executes the wp-cron.php script directly through PHP every
minute and avoid Http requests. There are also plugins that can assist with
this.

OTF3-012 Hardcoded Credentials • Do not store plaintext credentials.
• Remove hardcoded configuration files from source repositories.
• Set a strong password, unique for each environment.

OTF3-010 Misconfiguration Disable changing theme and plugin files within the GUI as an
administrator in Wordpress by adding the following in wp-config.php:
define('DISALLOW_FILE_EDIT', true);

OTF3-007 Misconfiguration Change the email settings to that of your own domain. Even if no mailserver
exist.

OTF3-006 Information Leak Remove the information that exposes version information. Wordpress has
several plugins and code snippets that can assist with this.

OTF3-004 Exposed Management
Interface

Restrict access by consider implementing IP-whitelisting or using Cloudflare
Access to reduce the attack vector.

OTF3-003 Missing Security
Header

Include a strict CSP header in every response.

OTF3-002 Insecure ACL Require credentials before access is allowed to Test and Development
websites.

OTF3-001 Insecure ACL • Restrict Admin access by adding restrictions who can reach the
the wp-admin directory. Examples how to do this are using basic
authentication or Cloudflare Access.

• Disable WP-CRON (note this sometimes breaks some plugins)
• Disable executing PHP files by web-users in restrictive directories.
• Add additional hardening to protect against potential arbitrary file

upload
• Several Wordpress plugins can assist with restricting access and

additionally using other best security practices.

Executive Summary 11

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

12 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Confidential

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 13

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Burp Suite Pro - https://portswigger.net/burp

• Nmap – https://nmap.org

• Testssl.sh – https://github.com/drwetter/testssl.sh

14 Radically Open Security B.V.

https://portswigger.net/burp
https://nmap.org
https://github.com/drwetter/testssl.sh

Confidential

4 Findings

We have identified the following issues:

4.1 OTF3-022 — Hypha - Insecure ACL on API Comments

Vulnerability ID: OTF3-022 Status: Resolved

Vulnerability type: Insecure ACL

Threat level: High

Description:

The API Comments functionality does not have the proper ACL configured allowing other users such as applicants and

partners to see the comments of others.

Technical description:

Partner using the API can see all other comments in the system:

An applicant can see other applicant comments:

Findings 15

Impact:

Leaking this data to other users is a significant breach of the confidentiality and integrity of the application.

Recommendation:

Update the code to make sure that low privileged users such as applicants and partners cannot read other clients

comments.

Update :

• Resolved, the API is not publicly exposed any more.

16 Radically Open Security B.V.

Confidential

4.2 OTF3-021 — Hypha - Session Expiry is 14 days.

Vulnerability ID: OTF3-021 Status: Resolved

Vulnerability type: Improper Session Management

Threat level: Moderate

Description:

Sessions remain active after a user closes the application and remain valid for 14 days.

Technical description:

The following session management issues were found:

• Session remains active after a user closes or terminates the application.

• Session remain valid for 14 days.

• No limitation of a number of simultaneous logins with a single user account.

Session cookie is set to 14 days:

Impact:

An attacker can resume a session that has not been properly invalidated and access the functionality available to the

user of that session. This attack or exposure can be more damaging and practical if shared or public computers are

used.

Findings 17

An attacker with access to application through a compromised account is able to create multiple sessions and can

continue using this access with a lowered risk of detection. This weakness is simple to utilise and is by application

design.

Recommendation:

• Reduce the default max session time to a lower value, e.g. 8 hours. Also make it possible for administrators to

configure this value in the configuration file of the application.

• Set a maximum amount of active sessions per user. If possible only allow one active session per user. Note that

some applications require the use of multiple devices (as they can be used on other devices such as a mobile

phone and laptop), which discounts allowing only one active session as a solution. In this case the user could be

shown a session overview (with the time when session was created and the kind of device it was created on) in

case there are multiple active sessions. The user should be able to select and invalidate any session that should

be deactivated.

Update :

This has been resolved. A SESSION_COOKIE_AGE setting has been added to the Django base.py configuration file.

4.3 OTF3-016 — Hypha - Improper Input Validation

Vulnerability ID: OTF3-016 Status: Not Retested

Vulnerability type: Improper Input Validation

Threat level: Moderate

Description:

The application incorrectly validates input that can affect the control flow or data flow of a program.

Technical description:

Through the application dangerous input is accepted which could result in XSS vulnerabilities. It is important to not allow

dangerous input in the first place by rejecting it. This can be done by first clientside - and secondly using server side

validation.

The following form was sent containing dangerous characters and payload:

18 Radically Open Security B.V.

Confidential

This behavior has been found in most parts of the application as well and we would recommend the developer to

implement additional security to reduce the attack vector.

Impact:

Allowing dangerous input could lead to XSS and could also make it easier for zero days to succeed. While at this stage it

does not result in a vulnerability allowing this does unnecessairly increase the attack vector.

Recommendation:

• Assume all input is malicious. Use an 'accept known good' input validation strategy i.e. use a whitelist of

acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to

specifications, or transform it into something that does.

• When performing input validation, consider all potentially relevant properties, including length, type of input, the full

range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to

business rules.

• Do not rely exclusively on looking for malicious or malformed inputs (i.e. do not rely on a blacklist). A blacklist is

likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers

enough room to bypass the intended validation. However blacklists can be useful for detecting potential attacks or

determining which inputs are so malformed that they should be rejected outright.

• For any security checks that are performed on the client side, ensure that these checks are duplicated on

the server side. Attackers can bypass the client-side checks by modifying values after the checks have been

performed, or by changing the client to remove the client-side checks entirely. Then these modified values would

be submitted to the server.

Findings 19

• Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful.

First, they can support intrusion detection. If the server receives input that should have been rejected by the client,

then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the

user about the expectations for valid input. Third, there may be a reduction in server-side processing time for

accidental input errors, although this is typically a small savings.

• When your application combines data from multiple sources, perform the validation after the sources have been

combined. The individual data elements may pass the validation step but violate the intended restrictions after

they have been combined. Inputs should be decoded and canonicalised to the application's current internal

representation before being validated.

• Make sure that your application does not inadvertently decode the same input twice. Such errors could be used to

bypass whitelist schemes by introducing dangerous inputs after they have been checked.

• Consider performing repeated canonicalisation until your input does not change any more. This will avoid double-

decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-

encoded dangerous content.

Update :

OTF will leave this as it is for now. Long term we will start doing input filtering but for now we stick with filtering the

output.

4.4 OTF3-008 — Wordpress - 2FA disabled for admin user.

Vulnerability ID: OTF3-008 Status: Resolved

Vulnerability type: Insecure Password

Threat level: Moderate

Description:

The admin account is not protected by Two-Factor-Authentication (2FA).

Technical description:

It was found that the 2FA plugin is enabled and enforces 2FA for all users, except the admin account:

20 Radically Open Security B.V.

Confidential

Impact:

Lack of 2FA authentication does not allow users to protect their account with a second factor which means that an

account has to be considered breached when the password is leaked.

Recommendation:

Add support for 2FA authentication.

Update :

This has been resolved.

Findings 21

4.5 OTF3-005 — Wordpress - Wordpress username can be found through
wp-json

Vulnerability ID: OTF3-005 Status: Resolved

Vulnerability type: Misconfiguration

Threat level: Moderate

Description:

WordPress user details can be found through the wp-json endpoint.

Technical description:

It was found that the default Wordpress admin user is not in use any more which is good:

However the current administrator account can still be found by abusing The WP JSON functionality:

Feedback from client:

I have used "rest_authentication_errors" filter to limit access to this end point to authenticated users.

22 Radically Open Security B.V.

Confidential

Pantheon have an recommendation to do this I found, https://docs.pantheon.io/guides/wordpress-developer/wordpress-

best-practices#disable-anonymous-access-to-wordpress-rest-api

Impact:

Anyone can directly access the affected endpoint and extract all user information. The user details can further be used to

perform brute force attacks or targeted phishing.

Recommendation:

The WordPress installation has the REST API /wp-json/wp/v2/publicly accessible. It is recommend to disallow the

public access, or disable the API if it is not needed.

Update :

Resolved: the site is now showing "Pantheon site locked" when attempting to access the wp-json functionality.

4.6 OTF3-028 — Hypha - XSS in Wagtail

Vulnerability ID: OTF3-028 Status: Not Retested

Vulnerability type: XSS

Threat level: Low

Description:

Improper input validation in Wagtail CMS leads to multiple XSS vulnerabilities across the frontend and backend.

Technical description:

• Cross site scripting payload is allowed within the Footer resulting in XSS in the frontend. This issue was found

during the previous pentest as well and requires Wagtail Admin authorizations.

Findings 23

https://docs.pantheon.io/guides/wordpress-developer/wordpress-best-practices#disable-anonymous-access-to-wordpress-rest-api
https://docs.pantheon.io/guides/wordpress-developer/wordpress-best-practices#disable-anonymous-access-to-wordpress-rest-api

• XSS in Reviewer Role form. This issue was found during the previous pentest as well and requires minimally staff

authorizations.

24 Radically Open Security B.V.

Confidential

• XSS in helptext (/admin/settings/determinations/determinationformsettings/2/), requires at least Staff member

authorizations and reflects the XSS in:

Findings 25

• XSS in Fund form, requires at least Staff member authorizations. (Title and Type). This reflects back in:

26 Radically Open Security B.V.

Confidential

Impact:

This XSS can only be created and triggered by high privileged users (e.g staff and admin) which is the reason that

this has been rated with a Low threatlevel. However it is still recommended to not allow XSS in the first place since a

successful attack could lead to session hijack, credential stealing, or infecting systems with malware

Recommendation:

Implement proper input validation and output encoding to prevent XSS attacks.

More information can be found at: https://www.owasp.org/index.php/Cross_Site_Scripting

Update :

This won't be resolved. OTF will leave this as it is. These forms will be removed when we remove the public part of

Hypha.

4.7 OTF3-027 — Hypha - Inclusion of external Google Translate script.

Vulnerability ID: OTF3-027 Status: Not Retested

Vulnerability type: Cross Domain Inclusion

Threat level: Low

Description:

An external inclusion of the Google Translate script was found in the response of requests.

Findings 27

https://www.owasp.org/index.php/Cross_Site_Scripting

Technical description:

An external inclusion of the Google Translate script was found in the response of requests of the application:

Client feedback:

Google Translate will most likely be removed when we remove the public part of Hypha in a few month time.

Impact:

A malicious third-party script can execute JavaScript and HTTP(S) requests on the included website in case an

adversary is able to modify these contents.

Recommendation:

Try to avoid (where possible) using cross-domain scripts. Include and host as many scripts as possible on your own

domain(s. This way, you keep control over the source code, as well as referrer information.

Update :

This was not ready to be retested.

4.8 OTF3-026 — Hypha - Wagtail Documents can be downloaded without
authentication.

Vulnerability ID: OTF3-026 Status: Not Retested

Vulnerability type: Insecure ACL

Threat level: Low

28 Radically Open Security B.V.

Confidential

Description:

During the pentest we discovred that the Wagtail Documents can be downloaded without authentication.

Technical description:

Wagtail is the CMS used to manage the Hypha backend.

Fetching the document download URL:

Dowloading the file without authentication:

Impact:

Unauthenticated document access risks data exposure and potential info leaks. No current usage of this functionality

was found by the Hypha application. However, future updates could change that. Hence, the lower Moderate threatlevel.

Findings 29

Recommendation:

Add authentication checks before downloading the document is allowed.

Update :

OTF will leave this as it is. This feature will soon be removed together with the whole public part of Hypha. Images

and documents uploaded in the Wagtail CMS are only used on the public site so are ment to the public. Since we are

removing the whole public part of Hypha soon these will also be removed/unused.

4.9 OTF3-024 — Hypha - Missing CSP Header

Vulnerability ID: OTF3-024 Status: Not Retested

Vulnerability type: Missing Security Header

Threat level: Low

Description:

The Hypha application does not use the Content Security Policy header.

Technical description:

Notice that the CSP header is missing in the response of the following request:

CSP is a tool which developers can use to lock down their applications in various ways, mitigating the risk of content

injection vulnerabilities such as cross-site scripting, and reducing the privilege with which their applications execute.

30 Radically Open Security B.V.

https://w3c.github.io/webappsec-csp/#intro

Confidential

Impact:

The impact of XSS or Clickjacking is low at this stage since the X-XSS-Protection and X-Frame-Options headers are

already set.

Recommendation:

Note that X-XSS-Protection and X-Frame-Options headers are already set in the response which helps to mitigate these

kind of attacks. However, best practice suggests to replace these headers for a CSP Header that blocks these attacks.

Update :

OTF will leave this as it is for now.

4.10 OTF3-023 — Hypha - Backup Tokens after confirmation can still be seen.

Vulnerability ID: OTF3-023 Status: Resolved

Vulnerability type: Insecure Password

Threat level: Low

Description:

Backup Tokens shown during 2FA setup stay the same and can be accessed by the user even after setup is complete.

Technical description:

During the setup of 2FA:

Findings 31

User requesting these tokens after 2FA has been setup:

Impact:

If the backup tokens are accessible more than once, it means they can potentially be viewed by an unauthorized user if

the account is ever compromised. This would provide an attacker with an alternative way to bypass 2FA.

32 Radically Open Security B.V.

Confidential

Recommendation:

Make sure to follow the standard practice where backup tokens are only shown to the user once, typically at the time of

setting up 2FA. Implementing proper access controls and logging around the viewing and usage of backup tokens can

further enhance the security and integrity of the authentication process.

Update :

Resolved. The user's password is now required to access the backup tokens.

4.11 OTF3-020 — Hypha - External images can be attached

Vulnerability ID: OTF3-020 Status: Not Retested

Vulnerability type: Misconfiguration

Threat level: Low

Description:

External images can be embedded within several forms throughout the application.

Technical description:

In various forms, externally hosted images can be included. When a user visits the page containing these images, the

images are loaded, revealing the user's IP address.

Applicant adding an externally hosted image to a comment:

Findings 33

Webserver receives the IP of the visitor:

Other forms that allow the usage of externally hosted images:

34 Radically Open Security B.V.

Confidential

Impact:

Allowing adversaries to embed external images in a web application could expose IP addresses of application users to

an adversary which can be used in further attacks.

Recommendation:

Disable external image uploads if possible. If images are needed, use the application's existing internal upload feature.

Update :

OTF will leave this as it is for now. Discussions on the way internally how big they feel this issue is. To completely protect

ones location/ip address a VPN/Proxy service is needed.

Long term plan is maybe to replace the wysiwyg editor with a tool that converts pasted HTML in to markdown making it a

lot easier to handle.

4.12 OTF3-018 — Hypha - No anti automation

Vulnerability ID: OTF3-018 Status: Resolved

Vulnerability type: Missing Anti-Automation

Threat level: Low

Description:

The Apply form does not have proper Anti Automation functionality implemented.

Technical description:

Example of abusing the apply form:

Findings 35

Impact:

It is possible to automate the submission of this request with random data and flood the application's database with huge

data. It may (technically) also lead to DOS attack on the application/database.

Recommendation:

Apply an anti-automation on forms. One of the common ways to do it would be implementing a Captcha (hCAPTCHA is

very effective) on those pages and only show and enforce the use of it after a certain amount of requests per IP. Note

that Cloudflare does have some protection against this but still it did allow us to make more requests then should be

preferred.

Update :

Resolved. Rate limit has been implemented to the public forms such as login, password, 2FA and Mailchimp forms.

Client mentions that OTF has Cloudflare WAF in front of Hypha so not an urgent concern. Long term they plan to add

more internal features around this, mostly for other Hypha implementers.

36 Radically Open Security B.V.

Confidential

4.13 OTF3-017 — Hypha - Low privileged user able to Purge CDN and Cache

Vulnerability ID: OTF3-017 Status: Not Retested

Vulnerability type: Insecure ACL

Threat level: Low

Description:

Low privileged users are able to Purge CDN and Cache.

Technical description:

Staff members (high privileged users), Editors and Moderators do not see the Purge CDN and Cache functionality in the

User Interface but are still able to access and use the functionality by using the following URL's:

http://apply.hypha.test:8090/admin/cache/
http://apply.hypha.test:8090/admin/purge

Impact:

Impact is low since no possibility of abuse was found during testing, but new introduced functionality could make this

issue more severe. In general it is recommended to prevent users accessing functionality they should not have access

to.

Recommendation:

Verify whether the current user is allowed to access the requested resource and deny access if this is not the case.

Update :

OTF will leave this as it is. These features will soon be deleted when the whole public part of Hypha is removed.

Findings 37

4.14 OTF3-015 — Hypha - User Enumeration with Email Address Change

Vulnerability ID: OTF3-015 Status: Resolved

Vulnerability type: User Enumeration

Threat level: Low

Description:

Valid users can be found by abusing the Profile Change Email address functionality.

Technical description:

Changing to an existing email address shows an error that the email address already exists in the system:

38 Radically Open Security B.V.

Confidential

Impact:

Valid usernames can be enumerated and used in further attacks.

Recommendation:

• Set a timeout of 1 second (so based on the respones time an attacker cannot conduct a timing attack to find out

whether some processing happens or not if an account exists or not)

• Mention in the message to the user that a confirmation mail is send to the email address set. If the address

already exists in the system an email won't be send. If it does not exist an email would be send. And only after

confirming the email the address is updated in the email field.

Update :

Resolved. Email exists message not shown any more.

4.15 OTF3-014 — General - CBC Ciphers used

Vulnerability ID: OTF3-014 Status: Unresolved

Vulnerability type: TLS Misconfiguration

Threat level: Low

Description:

The webserver allows obsolete Cipher Block Chaining (CBC) encryption.

Technical description:

In cryptography, a padding oracle attack is an attack which uses the padding validation of a cryptographic message to

decrypt the ciphertext.

Padding oracle attacks are mostly associated with CBC mode decryption used within block ciphers.

In symmetric cryptography, the padding oracle attack can be applied to the CBC mode of operation, where the

"oracle" (usually a server) leaks data about whether the padding of an encrypted message is correct or not. Such data

can allow attackers to decrypt (and sometimes encrypt) messages through the oracle using the oracle's key, without

knowing the encryption key.

The webserver is configured to support Cipher Block Chaining (CBC) encryption on the following domains:

Findings 39

• apply.opentech.fund

• opentech.fund

40 Radically Open Security B.V.

Confidential

Feedback client:

This is Cloudflare controlled. OTF already have TLS 1.2 as minimum. OTF will leave this at it is.

Impact:

An attacker properly positioned between a user and the server, for example in the same network segment as the victim,

may be able to obtain unencrypted network traffic between the user and the server.

Recommendation:

Disable the use of TLS CBC ciphers. De-prioritizing these ciphers can also help minimize successful exploitation of real-

world attacks. The attacker typically cannot force the selection of a specific cipher and therefore can only execute a CBC

padding oracle attack if the client/server normally negotiates a vulnerable cipher.

Findings 41

4.16 OTF3-013 — Wordpress - WP Cron is enabled.

Vulnerability ID: OTF3-013 Status: Not Retested

Vulnerability type: Misconfiguration

Threat level: Low

Description:

The external WP-Cron appears to be enabled.

Technical description:

When opening the following url https://beta.opentech.fund/wp-cron.php it appears WP-Cron has been

enabled:

The wp-cron.php file is responsible for scheduled events in a WordPress website. By default, when a request is made,

WordPress will generate an additional request from it to the wp-cron.php file. By generating a large number of requests

to the website, it is therefore possible to make the site perform a DoS attack on itself.

Impact:

Increase of attack vector.

Recommendation:

Add the variable DISABLE_WP_CRON to true in the file wp-config.php and restrict access to the file wp-cron.php. In

case the cron is used there are other ways to run a cronjob. The alternative is to create in the system a cronjob that

executes the wp-cron.php script directly through PHP every minute and avoid Http requests. There are also plugins that

can assist with this.

42 Radically Open Security B.V.

Confidential

Update :

This was not ready for retesting.

4.17 OTF3-012 — Wordpress - Hardcoded SMTP credentials

Vulnerability ID: OTF3-012 Status: Not Retested

Vulnerability type: Hardcoded Credentials

Threat level: Low

Description:

The SMTP configuration including credentials was found in the supplied source code.

Technical description:

Notice the SMTP configuration and credentials in the supplied source code:

Impact:

Leaked credentials in source repositories can be found by adversaries, for instance on a compromised development

system. In the case of SMTP credentials these could be used for instance for phishing purposes to gain elevate

Findings 43

privileges by triggering a high priviged user clicking on a link that appears to come from a domain they trust. Note

that the impact is Low as the sourcecode was provided by the client and we neither did find this source code publicly

exposed.

Recommendation:

• Do not store plaintext credentials.

• Remove hardcoded configuration files from source repositories.

• Set a strong password, unique for each environment.

Update :

This was not ready for retesting.

4.18 OTF3-010 — Wordpress - Disable File Edit in the UI

Vulnerability ID: OTF3-010 Status: Resolved

Vulnerability type: Misconfiguration

Threat level: Low

Description:

Wordpress backend files such as configuration and templates can be edited using the UI.

Technical description:

As a high privileged user such as an admin, configuration files can be edited by using the UI.

Impact:

This could lead to elevated privileges to the underlying system resulting in a full compromise of the server.

44 Radically Open Security B.V.

Confidential

Recommendation:

Disable changing theme and plugin files within the GUI as an administrator in Wordpress by adding the following in wp-

config.php: define('DISALLOW_FILE_EDIT', true);

Update :

This has been resolved.

4.19 OTF3-007 — Wordpress - Post via Email

Vulnerability ID: OTF3-007 Status: Resolved

Vulnerability type: Misconfiguration

Threat level: Low

Description:

Default settings were found in the Post via Email functionality.

Technical description:

The following default parameters were found:

Feedback from client:

OTF has updated this on the beta.opentech.fund site now.

Impact:

As these are standard parameters a takeover of the example.com domain could result in defacing your website. While it

is unclear that this functionality is working or not it is better to change it to prevent any potential future exploitation.

Findings 45

Recommendation:

Change the email settings to that of your own domain. Even if no mailserver exist.

Update :

This has been resolved.

4.20 OTF3-006 — Wordpress - Version is exposed.

Vulnerability ID: OTF3-006 Status: Resolved

Vulnerability type: Information Leak

Threat level: Low

Description:

The Wordpress version is exposed.

Technical description:

Responses that reveal version information:

46 Radically Open Security B.V.

Confidential

Other files that expose information:

• https://beta.opentech.fund/readme.html

• https://beta.opentech.fund/README.md

• https://beta.opentech.fund/wp-admin/install.php

• https://beta.opentech.fund/license.txt

Feedback from client:

Found a code snippet to override the function that outputs the version.

Findings 47

https://beta.opentech.fund/readme.html
https://beta.opentech.fund/README.md
https://beta.opentech.fund/wp-admin/install.php
https://beta.opentech.fund/license.txt

Impact:

The impact is very low due to the current version not containing (any known) vulnerabilities. However showing the

version in the response is not best practice as it allows adversaries to quickly determine whether the server could be

vulnerable to future introduced exploits.

Recommendation:

Remove the information that exposes version information. Wordpress has several plugins and code snippets that can

assist with this.

Update :

Resolved: the version in use is not exposed any more.

4.21 OTF3-004 — Wordpress - Exposed Management Interface

Vulnerability ID: OTF3-004 Status: Resolved

Vulnerability type: Exposed Management Interface

Threat level: Low

Description:

Access to the websites Wordpress management portal can be easily guessed which would allow public access to the

management interface login portal.

Technical description:

The Website is using the wps-hide-login plugin which hides the standard wp-admin or wplogin.php page to

access the management interface it is using a very simple name myeditor that could easily be found by bruteforcing it

using a directory list.

48 Radically Open Security B.V.

Confidential

Feedback client:

OTF will put wp-admin function behind Cloudflare access. Cloudflare access will be setup to only allow access to users

with OTF Google accounts. Then they can scrap "security" features like "wps-hide-login".

Impact:

Any attacker who is able to successfully login or with access to a (0-day) exploit might be able to utilise successful

attacks against the application environment to develop further attacks against other systems and users.

Recommendation:

Restrict access by consider implementing IP-whitelisting or using Cloudflare Access to reduce the attack vector.

Update :

Resolved: protected now by Cloudflare login.

Findings 49

4.22 OTF3-003 — Wordpress - Missing CSP Header

Vulnerability ID: OTF3-003 Status: Resolved

Vulnerability type: Missing Security Header

Threat level: Low

Description:

The application fails to set an appropriate Content-Security Policy header on some pages which could allow attacks such

as XSS and Clickjacking.

Technical description:

This response does not contain a CSP header:

CSP is a tool which developers can use to lock down their applications in various ways, mitigating the risk of content

injection vulnerabilities such as cross-site scripting, and reducing the privilege with which their applications execute.

Impact:

This allows several attacks such as an attacker who found a XSS vulnerability and is able to bypass the browser filters to

load JavaScript from external servers under his control.

Recommendation:

Include a strict CSP header in every response.

50 Radically Open Security B.V.

https://w3c.github.io/webappsec-csp/#intro

Confidential

Update :

Resolved: the CSP header has been added by the client and now blocks our clickjacking payload.

4.23 OTF3-002 — Wordpress - Public access to Development and Test
websites

Vulnerability ID: OTF3-002 Status: Resolved

Vulnerability type: Insecure ACL

Threat level: Low

Description:

The Development and Test websites lack password protection allowing unauthorized access.

Technical description:

The following test / staging websites do not require credentials to be accessed:

• https://test-otf-public.pantheonsite.io

• https://dev-otf-public.pantheonsite.io

Feedback from client:

Passwords are set now for all environments. Also we have added redirect for the live site to beta.opentech.fund which

will be www.opentech.fund.

Impact:

Development and staging websites often undergo continuous changes, and new code might introduce temporary

vulnerabilities that can be exploited by an adversary which increases the attack vector.

Recommendation:

Require credentials before access is allowed to Test and Development websites.

Findings 51

https://test-otf-public.pantheonsite.io
https://dev-otf-public.pantheonsite.io
http://www.opentech.fund

Update :

Resolved: now requires credentials to access the Development and Test website.

4.24 OTF3-001 — Wordpress - ACL Hardening

Vulnerability ID: OTF3-001 Status: Resolved

Vulnerability type: Insecure ACL

Threat level: Low

Description:

Several directories and files are not properly hardened.

Technical description:

The following functionality can be accessed:

• https://beta.opentech.fund/wp-admin/admin-ajax.php

• https://beta.opentech.fund/wp-cron.php

The following directories should be hardened:

• https://beta.opentech.fund/wp-includes/

• https://beta.opentech.fund/wp-content

• https://beta.opentech.fund/wp-admin

• https://beta.opentech.fund/wp-content/uploads/

Client feedback:

The dirs "wp-admin", "wp-includes" and "wp-content" are now all behind Cloudflare access. Only OTF staff have access.

Impact:

Increase of attack vector using an insecure configuration.

52 Radically Open Security B.V.

https://beta.opentech.fund/wp-admin/admin-ajax.php
https://beta.opentech.fund/wp-cron.php
https://beta.opentech.fund/wp-includes/
https://beta.opentech.fund/wp-content
https://beta.opentech.fund/wp-admin
https://beta.opentech.fund/wp-content/uploads/

Confidential

Recommendation:

• Restrict Admin access by adding restrictions who can reach the the wp-admin directory. Examples how to do this

are using basic authentication or Cloudflare Access.

• Disable WP-CRON (note this sometimes breaks some plugins)

• Disable executing PHP files by web-users in restrictive directories.

• Add additional hardening to protect against potential arbitrary file upload

• Several Wordpress plugins can assist with restricting access and additionally using other best security practices.

Update :

Resolved: Access is now denied to these directories.

Findings 53

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-025 — Hypha - Forms can be submitted without agreeing the terms

A form can be submitted without agreeing to the terms.

Client feedback: These forms are created by staff and if they want a checkbox to be required they mark it as such during

the form creation. This is a none issue since it up to users of Hypha to create the forms they need.

5.2 NF-019 — General - Retesting findings previous report

1. All findings have been retested.

2. New issues have been created for findings that remain.

3. The XSS findings related to the Hypha frontent, that were previously managed by Wagtail, have not been retested

as this has been replaced by Wordpress.

5.3 NF-011 — Wordpress - Anti Automation in Newsletter Signup

Anti Automation is used to protect the Newsletter Signup form. This is done by the plugin and Cloudflare as well.

There are ways to bypass this protection, for instance by using different IP-addresses, but we found that the current

implementation should be sufficient to protect against most attacks. However, there is still room for improvement for

instance by adding a mandatory Captcha to the form, when correct would allow to submit the form.

Example of some bruteforce attempts:

54 Radically Open Security B.V.

Confidential

Note that after 8 requests we cannot conduct more anti-automation which limits this attack to 8 email addresses per IP-

address:

5.4 NF-009 — Wordpress - Xmlrpc is not enabled or accessible.

The XMLRPC functionality can be abused in several ways to target the website, for example performing a XSPA (Cross

Site Port Attack) and login brute force attacks. We found that access to xmlrpc.php is not enabled or it is not accessible

which is good.

Non-Findings 55

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

56 Radically Open Security B.V.

Confidential

7 Conclusion

We discovered 1 High, 4 Moderate and 19 Low-severity issues during this penetration test.

After retesting, we are pleased to report that all significant issues have been successfully addressed. While the

unresolved moderate and low-priority issues may not pose an immediate major risk, their resolution would significantly

bolster our defenses against potential attacks on the application, infrastructure, and users. We strongly recommend

addressing these issues as well.

After this we recommend to perform a retest in order to ensure that mitigations are effective and that no new

vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 57

Appendix 1 Testing team

Stefan Vink Stefan is an IT professional with a passion for IT security and automation. With 20 years
hands-on experience in a diverse range of IT roles such as automation / scripting /
monitoring / web development / system and network management in Windows and
Linux environments. He has worked for organisations such as the Central Bank of the
Netherlands (DNB), is MCITP, CCNA, LPIC, OSCP certified, and has passed the CISSP
exam. He loves to travel, hike, play tennis & chess, automation, and lives with his family
in Melbourne, Australia.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

58 Radically Open Security B.V.

