
‭Pacman‬
‭Security Assessment and Lightweight Threat Model‬

‭March 7, 2024‬

‭Prepared for:‬

‭Levente Polyak‬
‭Organized by the Open Technology Fund‬

‭Prepared by:‬‭Spencer Michaels, David Pokora, Sam Alws,‬‭and Dominik Czarnota‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2023 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be business confidential information; it is‬
‭licensed to the Open Technology Foundation under the terms of the project statement of‬
‭work and intended solely for internal use by the Open Technology Foundation. Material‬
‭within this report may not be reproduced or distributed in part or in whole without the‬
‭express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Project Summary‬ ‭5‬
‭Executive Summary‬ ‭6‬
‭Project Goals‬ ‭9‬
‭Project Targets‬ ‭10‬
‭Project Coverage‬ ‭11‬
‭Threat Model‬ ‭12‬

‭Data Types‬ ‭12‬
‭Data Flow‬ ‭12‬
‭Components and Trust Zones‬ ‭14‬
‭Trust Zone Connections‬ ‭17‬
‭Threat Actors‬ ‭19‬
‭Threat Scenarios‬ ‭21‬
‭Recommendations‬ ‭25‬

‭Automated Testing‬ ‭28‬
‭Codebase Maturity Evaluation‬ ‭30‬
‭Summary of Findings‬ ‭32‬
‭Detailed Findings‬ ‭33‬

‭1. Use-after-free vulnerability in the print_packages function‬ ‭33‬
‭2. Null pointer dereferences‬ ‭36‬
‭3. Allocation failures can lead to memory leaks or null pointer dereferences‬ ‭38‬
‭4. Buffer overflow read in string_length utility function‬ ‭41‬
‭5. Undefined behavior or potential null pointer dereferences by passing null pointers to‬
‭functions requiring non-null arguments‬ ‭44‬
‭6. Undefined behavior from use of atoi‬ ‭46‬
‭7. Database parsers fail silently if an option is not recognized‬ ‭48‬
‭8. Cache cleaning function may delete the wrong files‬ ‭49‬
‭9. Integer underflow in a length check leading to out-of-bounds read in‬
‭alpm_extract_keyid‬ ‭50‬

‭A. Vulnerability Categories‬ ‭52‬
‭B. Code Maturity Categories‬ ‭54‬
‭C. Code Quality Findings‬ ‭56‬
‭D. Fuzzing Pacman code‬ ‭61‬

‭Fuzzing harness notes‬ ‭61‬

‭Trail of Bits‬ ‭3‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Recommendations and further work‬ ‭62‬
‭E. Fix Review Results‬ ‭68‬

‭Detailed Fix Review Results‬ ‭69‬
‭F. Fix Review Status Categories‬ ‭71‬

‭Trail of Bits‬ ‭4‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Project Summary‬

‭Contact Information‬
‭The following project managers were associated with this project:‬

‭Jeff Braswell‬‭, Project Manager‬
‭jeff.braswell@trailofbits.com‬

‭The following engineering directors were associated with this project:‬

‭Anders Helsing‬‭, Engineering Director, Application‬‭Security‬
‭anders.helsing@trailofbits.com‬

‭The following consultants were associated with this project:‬

‭Spencer Michaels‬‭, Consultant‬ ‭David Pokora‬‭, Consultant‬
‭spencer.michaels@trailofbits.com‬ ‭david.pokora@trailofbits.com‬

‭Dominik Czarnota‬‭, Consultant‬ ‭Sam Alws‬‭, Consultant‬
‭dominik.czarnota@trailofbits.com‬ ‭sam.alws@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭November 13, 2023‬ ‭Pre-project kickoff call‬

‭November 14, 2023‬ ‭Discovery meeting #1‬

‭November 15, 2023‬ ‭Discovery meeting #2‬

‭November 16, 2023‬ ‭Discovery meeting #3‬

‭December 5, 2023‬ ‭Delivery of report draft, threat model readout meeting‬

‭December 6, 2023‬ ‭Code review readout meeting‬

‭March 7, 2024‬ ‭Delivery of fix review appendix‬

‭Trail of Bits‬ ‭5‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Executive Summary‬

‭Engagement Overview‬
‭The Open Technology Foundation engaged Trail of Bits to review the security of the‬
‭Pacman package manager, as well as its closely-associated package management library‬
‭libalpm‬‭. Pacman is the official package manager of‬‭Arch Linux and is developed by the‬
‭Arch team; it is also used in a handful of other Linux distributions, including Manjaro.‬

‭A team of two consultants conducted a threat model from November 13th to 17th, for a‬
‭total of two engineer weeks; this was followed by a code review by three engineers from‬
‭November 20th to December 1st, for a total of five engineer-weeks of effort. Our testing‬
‭efforts focused on package signature verification, data integrity during downloads and‬
‭upgrades, memory safety, and a new user-based isolation mechanism. With full access to‬
‭source code and documentation, we performed static and dynamic testing of Pacman and‬
‭libalpm‬‭, including fuzzing, using automated and manual‬‭processes. The audit scope‬
‭excluded the parts of the Pacman ecosystem used exclusively for building packages, such‬
‭as‬‭makepkg‬‭.‬

‭Observations and Impact‬
‭Overall, Pacman is well-designed, comprehensively-documented, and robust against‬
‭common application security issues. The code review portion of the engagement revealed‬
‭several issues ranging from low to undetermined severity, and while the threat model‬
‭revealed some plausible threat scenarios, these generally require the confluence of several‬
‭independent factors which set a relatively high bar for an attacker to achieve, such as‬
‭compromising a mirror, obtaining a signing key, intercepting a user’s connection under‬
‭certain configurations, and so on.‬

‭That said, certain defense-in-depth measures can be implemented to improve the‬
‭resilience of Pacman and the Arch Linux distribution and signing infrastructure, even‬
‭against cases where an attacker already has a partial foothold. Based on the threat model‬
‭and code review results, three major areas of improvement stand out:‬

‭●‬ ‭As Pacman is written in C, even security-conscious developers run a relatively high‬
‭risk of accidentally introducing memory safety issues — we discovered several‬
‭during the audit, although ultimately none proved especially serious‬
‭(‬‭TOB-PACMAN-1‬‭,‬‭TOB-PACMAN-4‬‭,‬‭TOB-PACMAN-9‬‭). We recommend‬‭employing the‬
‭use of static and dynamic analyses, including fuzz tests, to uncover additional‬
‭potential cases of memory corruption and leaks before attackers do.‬

‭●‬ ‭Pacman’s signing infrastructure is robust against maintenance issues such as keys‬
‭being lost (not stolen), signers becoming inactive or incapacitated, and so on.‬
‭However, due to a lack of documented incident response procedures, the Arch‬
‭Linux team may be ill-equipped to promptly respond to a security incident involving‬

‭Trail of Bits‬ ‭6‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭theft or malicious use of key materials. Additionally, a lack of clear auditing‬
‭guidelines and trust requirements for signers increases the likelihood that package‬
‭signing keys could be used maliciously. As Arch Linux continues to grow as an‬
‭organization, it is critical that security-related processes, guidelines, and‬
‭requirements are clearly and precisely documented to ensure consistency and‬
‭prompt response to security incidents.‬

‭●‬ ‭Pacman can verify database signatures, but Arch Linux’s official databases are not‬
‭signed and Pacman does not require databases to be signed by default. Combined‬
‭with the fact that Pacman allows the use of plaintext HTTP package mirrors, users‬
‭with such a configuration could be served malicious database files, which could‬
‭serve old and vulnerable versions of packages. This issue is known to the Arch Linux‬
‭team, and work is currently underway to rectify it.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that the Arch Linux team take the following steps:‬

‭●‬ ‭Remediate the‬‭code review findings‬‭disclosed in this‬‭report.‬‭These findings‬
‭should be addressed as part of a direct remediation or as part of any refactor that‬
‭may occur when addressing other recommendations.‬

‭●‬ ‭Create a long-term plan for implementing the strategic recommendations in‬
‭the‬‭Threat Model section‬‭of this report.‬‭These findings‬‭should be addressed as‬
‭part of a direct remediation or as part of any refactor that may occur when‬
‭addressing other recommendations.‬

‭●‬ ‭Clarify the intended use and safety guarantees of the‬‭--root‬‭argument.‬‭This‬
‭argument specifies which directory should be used by Pacman as the root directory.‬
‭However, it is not guaranteed that files and directories‬‭outside‬‭of the root directory‬
‭will remain untouched (for example, if there is a maliciously placed symlink inside of‬
‭the root directory). Pacman’s manpage entry states that the argument should not be‬
‭used as “a way to install software into‬‭/usr/local‬‭instead of‬‭/usr‬‭” or “for‬
‭performing operations on a mounted guest system”. However, Pacman‬
‭documentation does not state what this argument‬‭should‬‭be used for, and does not‬
‭give any information about the argument’s (lack of) safety guarantees.‬

‭●‬ ‭Implement security-focused static analysis, dynamic analysis, and fuzz tests.‬
‭These should be run against each new Pacman version prior to release to minimize‬
‭the likelihood that ongoing code changes introduce memory corruption issues.‬

‭Trail of Bits‬ ‭7‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Finding Severities and Categories‬

‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭0‬

‭Low‬ ‭1‬

‭Informational‬ ‭5‬

‭Undetermined‬ ‭3‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Data Validation‬ ‭5‬

‭Denial of Service‬ ‭1‬

‭Undefined Behavior‬ ‭3‬

‭Trail of Bits‬ ‭8‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the Pacman package‬
‭manager. Specifically, we sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Is there any way to bypass Pacman’s package signature validation?‬

‭●‬ ‭Is it possible to break out of the SandboxUser’s filesystem context implemented in‬
‭MR 23‬‭?‬

‭●‬ ‭Does the package consistency checking included in‬‭MR 96‬‭have any security issues?‬

‭●‬ ‭Is Pacman vulnerable to any form of memory corruption?‬

‭●‬ ‭Can an attacker with control over database contents (which are unsigned by default‬
‭and may be accessed over plaintext HTTP) cause Pacman to exhibit malicious‬
‭behavior?‬

‭○‬ ‭In particular, can a malicious database silently downgrade a package to a‬
‭known-vulnerable version, install a vulnerable package, or uninstall a‬
‭package providing security measures?‬

‭●‬ ‭Can a malformed package, or malformed metadata, cause Pacman to bring the‬
‭system into an inconsistent state?‬

‭●‬ ‭Are Pacman’s defaults conducive to secure operation by ordinary users?‬

‭●‬ ‭Does Pacman call out to third-party programs or libraries in unsafe ways?‬

‭●‬ ‭Does Pacman’s current test suite appropriately cover security related concerns?‬

‭●‬ ‭Is Arch Linux’s package signing infrastructure robust against failures and resilient to‬
‭compromise, including malicious insiders?‬

‭●‬ ‭Are Arch Linux’s official package repositories reasonably well protected against the‬
‭unexpected introduction of malicious code or metadata?‬

‭Trail of Bits‬ ‭9‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

‭Project Targets‬

‭The engagement involved a review and testing of the target listed below, including two‬
‭as-yet-unmerged pull requests.‬

‭Pacman‬
‭Repository‬ ‭https://gitlab.archlinux.org/pacman/pacman/‬

‭Version‬ ‭18e49f2c97f0e33a645f364ed9de8e3da6c36d41‬

‭Type‬ ‭C binary application‬

‭Platform‬ ‭Linux‬

‭Merge Request 23: Add SandboxUserConfiguration‬
‭URL‬ ‭https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23‬

‭Merge Request 96: Check package consistency when installing‬
‭URL‬ ‭https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96‬

‭Trail of Bits‬ ‭10‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭A lightweight threat model of Pacman and the portion of its infrastructure related to‬
‭package signing and distribution.‬

‭●‬ ‭Non-exhaustive manual review of the Pacman codebase as well as two‬
‭security-relevant pull requests pending acceptance, with a focus on code paths‬
‭pertaining to security-critical functionality highlighted in the initial threat model‬

‭●‬ ‭Static analysis of the Pacman codebase and manual triage of results‬

‭●‬ ‭Dynamic analysis to identify instances of memory corruption and leaks‬

‭●‬ ‭Fuzzing to identify inputs that could cause unexpected behavior at runtime‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭Code of various dependencies used by Pacman like libarchive, gpgme etc.‬

‭●‬ ‭Although we included signing/packaging infrastructure security controls in the‬
‭threat model, we did not have access to review their implementation during the‬
‭code review.‬

‭Trail of Bits‬ ‭11‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Threat Model‬

‭As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from‬
‭Mozilla’s “Rapid Risk Assessment" methodology‬‭and‬‭the National Institute of Standards and‬
‭Technology’s (NIST) guidance on data-centric threat modeling (‬‭NIST 800-154‬‭). The results of‬
‭the lightweight threat model are noted in the subsections below.‬

‭Data Types‬
‭The target application makes use of the following data formats:‬

‭●‬ ‭Tar files (.tar), usually compressed (.zst, .gz, or .xz): Pacman package files‬
‭●‬ ‭Bash scripts: PKGBUILD, INSTALL files‬
‭●‬ ‭INI configuration files: hooks, configuration files (e.g. pacman.conf)‬
‭●‬ ‭Plain text: PKGINFO, BUILDINFO, database and file-list files‬
‭●‬ ‭PGP keys‬

‭Data Flow‬
‭Pacman is the default package manager for Arch Linux, maintained officially by the Arch‬
‭Linux development team.‬

‭Pacman retrieves packages from one or more‬‭repositories‬‭,‬‭which can either be located on‬
‭the local host’s filesystem, or accessed over the network via any protocol supported by‬
‭libcurl, which Pacman uses internally. Packages can also be directly installed from the‬
‭filesystem without being associated with a repository.‬

‭In a typical use case, users download the vast majority of their packages pre-built from‬
‭HTTP or HTTPS mirrors of the remote Arch Linux official repositories. A small number of‬
‭unofficial packages, such as those from the Arch User Repository, may be built and‬
‭installed either directly as a manually-built package file on the local filesystem, or from a‬
‭repository hosted on the local filesystem.‬

‭When a package is installed, Pacman verifies its signature using an internal‬‭Pacman Keyring‬‭,‬
‭with root-of-trust derived from a unique‬‭System Master‬‭Key‬‭which is generated upon system‬
‭installation, and used to sign the set of‬‭Main Signing‬‭Keys‬‭imported into the system-local‬
‭Pacman keyring. These‬‭Main Signing Keys‬‭, of which‬‭there are only a small number, are used‬
‭by the Arch Linux developers to sign‬‭Packaging Keys‬‭,‬‭with which package maintainers sign‬
‭their packages. Each main signing key has an associated‬‭Revocation Key‬‭, held in the‬
‭possession of a different trusted signer, which can be used to revoke it in the event of a‬
‭compromise. Those keys, along with the names of developers they belong to, are listed on‬
‭the‬‭https://archlinux.org/master-keys/‬‭website.‬

‭Data for keys stored in Pacman’s internal keyring is kept-up-to-date via the‬‭WKD Sync‬
‭Service‬‭, which runs weekly on Arch Linux and syncs‬‭with a distributed‬‭Web Key Directory‬‭. The‬

‭Trail of Bits‬ ‭12‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://archlinux.org/master-keys/

‭sync service can only update metadata (such as expiration dates) for existing stored keys; it‬
‭cannot alter whether or not a given key is trusted.‬

‭Maintainers generally use‬‭makepkg‬‭to generate pacman‬‭packages from application/library‬
‭sources. The build scripts for Arch Linux’s official packages are hosted on a dedicated‬
‭GitLab‬‭account,‬‭https://gitlab.archlinux.org/‬‭, with‬‭login handled by an Arch-managed‬
‭Keycloak SSO‬‭instance. Most official packages are‬‭built on a single, high-capacity‬‭Main Build‬
‭Server‬‭administered by dedicated‬‭DevOps‬‭members of‬‭the Arch Linux team and accessible‬
‭via SSH; however, individual maintainers may build and sign packages on other machines.‬
‭Packagers are currently strongly encouraged, although not strictly required, to retain‬
‭signing keys only on hardware keys (as opposed to on their local filesystem).‬

‭All official Arch Linux packages are currently signed, and by default, Pacman requires‬
‭packages from remote repositories to have a valid signature trusted by Arch’s main signing‬
‭keys. Package installation transactions may be preceded and/or followed by‬‭hooks‬‭, which‬
‭can invoke arbitrary commands in response to the presence of specific packages in a‬
‭transaction. Packages, along with detached signatures, are cached in a‬‭Package Cache‬
‭directory (‬‭/var/cache/pacman/pkg‬‭) on the local filesystem‬‭after installation.‬

‭Below, we depict known connections between system components of the‬
‭package-consumption side of Pacman, as integrated in Arch Linux. These diagrams are‬
‭intended to convey our understanding of the system as a whole. Further details will be‬
‭discussed in the‬‭Components and Trust Zones‬‭and‬‭Trust‬‭Zone Connections‬‭report‬
‭subsections. The dotted lines indicate trust boundaries separating zones.‬

‭Trail of Bits‬ ‭13‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/

‭Figure 1: The data flow of packages and their signing data from Arch Linux’s root-of-trust to the‬
‭host machine on which Pacman runs.‬

‭Components and Trust Zones‬
‭The following table describes the components that make up the Pacman package‬
‭management system, as well as the external dependencies on which they rely. These‬
‭system elements are further classified into‬‭trust‬‭zones‬‭—logical clusters of shared‬
‭functionality and criticality, between which the system enforces (or should enforce)‬
‭interstitial controls and access policies.‬

‭Components marked by asterisks (*) are considered out of scope for the assessment. We‬
‭explored the implications of threats involving out-of-scope components that directly affect‬
‭in-scope components, but we did not consider threats to out-of-scope components‬
‭themselves.‬

‭Component‬ ‭Description‬

‭Host Machine‬ ‭The host on which Pacman is used to manage packages.‬

‭Pacman Package‬
‭Manager‬

‭Pacman is a package management tool that tracks installed packages on a‬
‭Linux system, including support for dependency resolution/retrieval,‬
‭package groups, install/uninstall scripts, and pre/post-install hooks. It also‬

‭Trail of Bits‬ ‭14‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭contains utilities such as makepkg, used to create packages which can be‬
‭installed by Pacman.‬

‭Local Filesystem‬
‭Repository‬

‭A repository residing on the local filesystem. Repositories provide a listing‬
‭of packages which can be fetched, installed, or upgraded. The package‬
‭listing is managed by the repository maintainer(s). Packages can be signed‬
‭or unsigned.‬

‭Package Cache‬ ‭A directory populated with previously-installed packages. Cached packages‬
‭are used to rapidly reinstall a previously installed package. Any signatures‬
‭contained within packages are also stored alongside and validated for each‬
‭cached package item.‬

‭Pacman Keyring‬ ‭A keyring containing signing keys for all packages installed on the system.‬
‭Keys within the keyring are only considered trusted if they are signed by an‬
‭Arch Linux packaging key (which is in turn signed by a main signing key).‬

‭System Master‬
‭Key‬

‭The root of trust for Pacman’s signature validation on any given installation.‬
‭Master keys are generated at first Pacman run (and so on first boot of Arch‬
‭Linux), are unique to each Arch Linux install, and are used by the host‬
‭machine to trust the Arch Linux main signing keys.‬

‭WKD Sync‬
‭Service‬

‭A GPG wrapper service on Arch Linux that runs weekly to sync updates (e.g.‬
‭expiry extensions) to keys in the Pacman keyring, pulled from a Web Key‬
‭Directory (WKD). The WKD service can add previously-unknown signatures‬
‭to the keyring, but cannot make Pacman trust those signatures.‬

‭Hooks‬ ‭Pre- and post-install hooks which enable running commands just before or‬
‭after a Pacman transaction (e.g., to rebuild a new kernel image after‬
‭Pacman installs a new kernel version).‬

‭Local Network‬ ‭The‬‭components which share a local network with the‬‭Host Machine.‬

‭Local Network‬
‭Repository‬

‭A repository residing. Repositories provide a listing of packages which can‬
‭be fetched, installed, or upgraded. The package listing is managed by the‬
‭repository maintainer(s). Packages can be signed or unsigned.‬

‭Remote Network‬ ‭The components which live outside of the Local Network trust zone, e.g.‬
‭public-facing external network components.‬

‭Remote Network‬
‭Repository‬

‭A repository residing on a remote network host. Repositories provide a‬
‭listing of packages which can be fetched, installed, or upgraded. The‬

‭Trail of Bits‬ ‭15‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭package listing is managed by the repository maintainer(s). Packages can be‬
‭signed or unsigned.‬

‭Web Key‬
‭Directory (WKD)‬

‭GnuPG’s standard system for key discovery, which maps public keys to‬
‭email addresses.‬

‭Arch Linux‬
‭GitLab (*)‬

‭The GitLab account hosting the source code for official Pacman packages.‬

‭Packaging‬
‭Infrastructure‬

‭The machines (and their operators) that build and sign Pacman packages.‬

‭Main Build‬
‭Server (*)‬

‭The dedicated, high-capacity machine that the Arch Linux team uses to‬
‭build the majority of its official packages.‬

‭Packager Host‬ ‭A host operated by a Packager, used to build and sign packages.‬

‭Packaging Keys‬ ‭A key used by package maintainers to sign packages. Each trusted‬
‭maintainer is issued a packaging key signed by a quorum of main signing‬
‭keys.‬

‭Makepkg (*)‬ ‭The toolset used to build Pacman packages.‬

‭Packaging‬
‭Root-of-Trust‬

‭The components which are used to facilitate administration of an operating‬
‭system’s primary mirrors and managing their authorized package signers.‬

‭Main Signing‬
‭Keys‬

‭The root of trust for Arch Linux’s signing infrastructure, which can sign new‬
‭packaging keys as well as packages themselves. Currently, only five main‬
‭signing keys exist.‬

‭Revocation Keys‬ ‭Each Main Signing Key has a single associated Revocation Key used to‬
‭revoke the signing key in the event of compromise. Each signing key’s‬
‭Revocation Key is held by another signing key owner.‬

‭Arch Linux‬
‭DevOps‬

‭The individuals who administer Arch Linux’s Keycloak SSO instance, GitLab‬
‭account, etc.‬

‭Trail of Bits‬ ‭16‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Trust Zone Connections‬
‭At a design level, trust zones are delineated by the security controls that enforce the‬
‭differing levels of trust within each zone. Therefore, it is necessary to ensure that data‬
‭cannot move between trust zones without first satisfying the intended trust requirements‬
‭of its destination. We enumerate such connections between trust zones below.‬

‭Originating‬
‭Zone‬

‭Destination‬
‭Zone‬

‭Data Description‬ ‭Connection‬
‭Type‬

‭Auth Type‬

‭Host Machine‬ ‭Host Machine‬ ‭All operations‬
‭performed by pacman‬
‭which leverage‬
‭components in the‬
‭same zone, largely rely‬
‭on cryptographic‬
‭verification (e.g. signed‬
‭packages, packager key‬
‭authorization).‬

‭The artifacts written by‬
‭pacman are done so in‬
‭root-user execution‬
‭context, with file‬
‭permissions blocking‬

‭Filesystem‬ ‭File‬
‭Privileges,‬

‭GNUpg‬
‭signature‬
‭validation‬

‭Remote‬
‭Network‬

‭Host Machine‬ ‭The host’s WKD Sync‬
‭Service pulls updated‬
‭key information from a‬
‭Web Key Directory into‬
‭the Pacman Keyring.‬

‭HTTPS‬ ‭None‬

‭Remote‬
‭Network,‬
‭Local Network‬

‭Host Machine‬ ‭The host installs a‬
‭package from a Local or‬
‭Remote Network‬
‭Repository.‬

‭libcurl‬
‭supported‬
‭protocols (e.g.‬
‭HTTP, HTTPS,‬
‭FTP, …)‬

‭GNUpg‬
‭signature‬
‭validation,‬

‭libcurl‬
‭supported‬
‭protocols‬
‭(e.g. TLS)‬

‭Remote‬
‭Network‬

‭Local‬
‭Network‬

‭Third-party package‬
‭sources pulled from the‬
‭Internet are‬

‭Varies; likely‬
‭HTTP/S‬

‭Varies or‬
‭None‬

‭Trail of Bits‬ ‭17‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭downloaded to, and‬
‭built on, the local‬
‭network; the resulting‬
‭packages are placed in‬
‭a Local Network‬
‭Repository.‬

‭Remote‬
‭Network‬

‭Packaging‬
‭Infrastructure‬

‭Package sources hosted‬
‭on the Arch Linux‬
‭GitLab are downloaded‬
‭to, and built on, the‬
‭Main Build Server or a‬
‭Packager Host.‬

‭HTTPS‬ ‭SSH‬

‭Packaging‬
‭Root-of-Trust‬

‭Packaging‬
‭Infrastructure‬

‭A quorum of Main‬
‭Signing Key holders‬
‭signs a new Packaging‬
‭Key, or issues‬
‭revocations for an‬
‭existing one.‬

‭N/A‬ ‭GNUpg‬
‭signature‬
‭verification‬

‭Packaging‬
‭Root-of-Trust‬

‭Arch Linux‬
‭GitLab‬

‭An Arch Linux‬
‭administrator logs into‬
‭GitLab through‬
‭Keycloak SSO.‬

‭HTTPS‬ ‭OAuth‬

‭Trail of Bits‬ ‭18‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Threat Actors‬
‭When conducting a threat model, we define the types of actors that could threaten the‬
‭security of the system. We also define other users of the system who may be impacted by,‬
‭or induced to undertake, an attack. For example, in a confused deputy attack such as‬
‭cross-site request forgery, a normal user who is induced by a third party to take a malicious‬
‭action against the system would be both the victim and the direct attacker. Establishing the‬
‭types of actors that could threaten the system is useful in determining which protections, if‬
‭any, are necessary to mitigate or remediate vulnerabilities. We will refer to these actors in‬
‭descriptions of the security findings that we uncovered through the threat modeling‬
‭exercise.‬

‭Actor‬ ‭Description‬

‭End Users‬ ‭Actors representing users of Pacman and consumers of its‬
‭packages and repositories. They operate in the Host Machine zone,‬
‭and may have influence over the Local Network zone and its‬
‭repositories.‬

‭Local User‬ ‭A low-privileged user on the Host Machine, e.g. non-admin,‬
‭non-root. They cannot execute sensitive pacman operations, as‬
‭they require root-access.‬

‭Local Root‬ ‭The root user on the Host Machine, with privileges to perform any‬
‭operations they desire. Pacman requires a Local User to elevate to‬
‭Local Root to install or update packages.‬

‭Operators‬ ‭Privileged actors with the responsibility of operating Packaging‬
‭Infrastructure and Packaging Root-of-Trust components.‬

‭Repository‬
‭Administrator‬

‭An individual with control over a Pacman repository/mirror. They‬
‭may operate a local machine, local network, or remote repository.‬

‭DevOps Administrator‬ ‭An individual with control over Arch Linux’s DevOps infrastructure,‬
‭including the Arch Linux GitLab account and Keycloak SSO instance.‬

‭Packager‬ ‭An individual in possession of a Packaging Key which was signed‬
‭and approved by a Trusted Signer‬

‭Trusted Signer‬ ‭An individual in possession of a Master Signing Key, a single keypair‬
‭used in a threshold signature scheme (TSS) which performs‬
‭sensitive operations such as approving a new Packaging Key.‬

‭Trail of Bits‬ ‭19‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Trusted Signers, in quorum, act as a root of trust for pacman‬
‭repository management.‬

‭Attacker‬ ‭An attacker positioned either within or external to any of the trust‬
‭zones previously described.‬

‭Internal Attacker‬ ‭An Internal Attacker is an attacker who has transited one or more‬
‭trust boundaries. Such an attacker may be an existing actor role in‬
‭the system or an External Attacker who has successfully transited a‬
‭trust boundary into the system.‬

‭E‬‭xternal Attacker‬ ‭An External Attacker is an attacker who is external to the cluster‬
‭and is unauthenticated, such as an attacker with control over‬
‭external services.‬

‭Trail of Bits‬ ‭20‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Threat Scenarios‬
‭The following table describes possible threat scenarios given the design, architecture, and‬
‭risk profile of the Pacman package manager.‬

‭Scenario‬ ‭Actor(s)‬ ‭Component(s)‬

‭An operating system provides a default mirror‬
‭list leveraging insecure protocols.‬‭Developers of‬
‭an operating system such as Arch Linux may‬
‭generate a list of repository sources which leverage‬
‭insecure protocols (e.g. HTTP, FTP). Due to pacman’s‬
‭lack of protocol restrictions, its underlying libcurl‬
‭dependency will communicate over the insecure‬
‭protocol.‬

‭If a Local User or Local Root actor uses this insecure‬
‭protocol to fetch packages from a Local Network or‬
‭Remote Repository, it may expose them to‬
‭man-in-the-middle attacks. Although such an attack‬
‭may not be problematic for signed packages,‬
‭unsigned packages may be substituted with‬
‭maliciously crafted packages by an Attacker.‬

‭●‬‭Repository‬
‭Administrator‬

‭●‬‭Trusted‬
‭Signer‬

‭●‬‭Attacker‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭An operating system which leverages pacman‬
‭does not enforce signed packages by default.‬
‭Arch Linux by default requires all packages to be‬
‭signed to be installed, verifying they have been‬
‭approved. In the event a Linux distribution does not‬
‭configure pacman to require signatures, this may‬
‭introduce risk, compounding on the threat scenario‬
‭mentioned in the previous row of this table.‬

‭Unsigned packages may be modified or indicative of‬
‭a lack of approval process. They may be subject to‬
‭modification in-flight through a man-in-the-middle‬
‭attack that may put users at risk.‬

‭The Package Cache containing a copy of previously‬
‭unsigned installations may also be modified if it is‬
‭improperly secured. By default, Arch Linux saves‬
‭Package Cache items with special privileges that‬
‭should disallow any user role except Local Root to‬
‭modify them, mitigating this risk.‬

‭●‬‭Repository‬
‭Administrator‬

‭●‬‭Packager‬

‭●‬‭Trusted‬
‭Signer‬

‭●‬‭Attacker‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭Trail of Bits‬ ‭21‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭An environment variable affects Pacman‬
‭Package Manager’s libcurl dependency.‬‭For‬
‭instance, Pacman redirects its HTTP connections‬
‭through the proxy defined in the‬‭http_proxy‬
‭environment variable. If an attacker injects an‬
‭environment variable into Pacman’s runtime‬
‭environment — a difficult prospect, given that it‬
‭runs as root during installs — he may be able to‬
‭cause Pacman to exhibit exploitable or undesirable‬
‭behavior.‬

‭●‬‭Local Root‬ ‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭An Attacker attempts a substitution attack,‬
‭bumping versions on a popular package through‬
‭a compromised Local Network Repository or‬
‭Remote Repository.‬‭Pacman will always install the‬
‭latest version of a package across all repositories it‬
‭has access to. As such, if a user has both local and‬
‭remote repositories enabled, an attacker who is‬
‭able to introduce an identically-named,‬
‭higher-versioned package into one of the remote‬
‭repositories can easily induce the user to install his‬
‭version of the package. Similar attacks may also be‬
‭possible via DNS confusion, e.g. if an attacker‬
‭registers a domain that shadows a local-network‬
‭domain name. See‬‭this GitHub blog post‬‭on‬
‭substitution attacks against NPM.‬

‭●‬‭Repository‬
‭Administrator‬

‭●‬‭External‬
‭Attacker‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭●‬‭Local Network‬
‭Repository‬

‭●‬‭Remote‬
‭Network‬
‭Repository‬

‭An attacker compromises a Packaging Key and‬
‭produces different, but valid, signatures for a‬
‭package to introduce malicious changes.‬‭In this‬
‭case, Pacman would install the new package version‬
‭normally, and the user would be entirely unaware.‬
‭Currently, there is no way to enable a warning when‬
‭a package’s signature changes.‬

‭●‬‭Packager‬

‭●‬‭Internal‬
‭Attacker‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭●‬‭Packaging‬
‭Keys‬

‭A Packaging Key or Packager is compromised,‬
‭requiring revocation of their Packaging Key.‬‭Due‬
‭to a lack of documented procedures for revocation,‬
‭response by Trusted Signers may be delayed, giving‬
‭the attacker more time to cause damage.‬

‭●‬‭Packager‬

‭●‬‭Trusted‬
‭Signer‬

‭●‬‭Packaging‬
‭Keys‬

‭Trail of Bits‬ ‭22‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://github.blog/2021-02-12-avoiding-npm-substitution-attacks/

‭A Trusted Signer’s key is compromised, requiring‬
‭incident response.‬‭Due to a lack of documented‬
‭procedures for revocation, response by the Trusted‬
‭Signer holding the compromised key’s revocation‬
‭key may be delayed, giving the attacker more time‬
‭to cause damage.‬

‭●‬‭Trusted‬
‭Signer‬

‭●‬‭Main Signing‬
‭Keys‬

‭●‬‭Revocation‬
‭Keys‬

‭The (unsigned) Pacman database used to index‬
‭packages may be modified by an Attacker.‬‭The‬
‭database used by Pacman is not signed. The‬
‭database is used as an index for packages on the‬
‭system.‬

‭Although most of the data used by Pacman is‬
‭derived from signed packages on Arch Linux, the‬
‭database is used to determine depends/replace‬
‭directives when installing a package. This is done‬
‭without verification that the depends/replace data‬
‭taken from package metadata has not been‬
‭tampered with.‬

‭As such, an Attacker with access to the Pacman‬
‭database may replace depends/replace directives‬
‭within the database for a given package, to trigger a‬
‭deletion or replace-with-empty operation of an‬
‭existing package on the user’s system.‬

‭●‬‭End User‬

‭●‬‭Internal‬
‭Attacker‬

‭●‬‭Packager‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭●‬‭Local Network‬
‭Repository‬

‭●‬‭Remote‬
‭Network‬
‭Repository‬

‭Vulnerable or malicious packages are assigned a‬
‭package group with a name identical to a‬
‭popular, existing package.‬‭Currently, Pacman‬
‭always resolves such a conflict in favor of the group,‬
‭with no way to override this behavior. As such,‬
‭users could be made to unwittingly install an‬
‭arbitrary package or set of packages in place of a‬
‭common package.‬

‭●‬‭Packager‬

‭●‬‭End User‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭●‬‭Local Network‬
‭Repository‬

‭●‬‭Remote‬
‭Network‬
‭Repository‬

‭A naive user sets overly-permissive file‬
‭permissions on their keyring, config files, or‬
‭hooks.‬‭An attacker who achieves local filesystem‬
‭access — e.g., by compromising a low-privileged‬

‭●‬‭End User‬ ‭●‬‭Host Machine‬

‭Trail of Bits‬ ‭23‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭service — could inject malicious settings,‬
‭commands, or additional trusted keys in order to‬
‭perform privilege escalation.‬

‭A revocation certificate or signing key (e.g.‬
‭Package Key, Trusted Signer key) is lost or‬
‭corrupted.‬‭In addition, since there are no standard‬
‭procedures for regular checks of keys or their‬
‭backup media after initial creation, it is possible that‬
‭keys could be permanently lost. In particular, since‬
‭revocation keys are long-lived and very rarely used,‬
‭they may become inaccessible (e.g. through‬
‭corrupted media) long before this fact is discovered,‬
‭only to be realized too late when the key is sorely‬
‭needed.‬

‭●‬‭Trusted‬
‭Signer‬

‭●‬‭Packager‬

‭●‬‭Revocation‬
‭Keys‬

‭●‬‭Main Signing‬
‭Keys‬

‭An attacker compromises a mirror of Arch Linux‬
‭official packages, or intercepts a user’s non-TLS‬
‭connection to a repository, and injects a‬
‭malicious version of a package.‬‭In this case,‬
‭Pacman would refuse to install the package, as it‬
‭requires signatures from remote repositories by‬
‭default.‬

‭●‬‭End User‬

‭●‬‭Repository‬
‭Administrator‬

‭●‬‭Internal‬
‭Attacker‬

‭●‬‭Pacman‬
‭Package‬
‭Manager‬

‭●‬‭Local Network‬
‭Repository‬

‭●‬‭Remote‬
‭Network‬
‭Repository‬

‭Trail of Bits‬ ‭24‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Recommendations‬
‭Trail of Bits recommends that the Arch Linux team implement the following‬
‭recommendations to mitigate the threat scenarios described above:‬

‭1.‬ ‭Set Pacman to reject non-TLS mirrors by default.‬‭Since‬‭databases are not‬
‭currently signed, an attacker who can intercept an unauthenticated connection‬
‭between a user and a repository could modify their contents in transit. A new‬
‭configuration value such as “AllowInsecureMirrors” can be added to pacman.conf to‬
‭permit the use of non-TLS mirrors on a case-by-case basis if necessary for‬
‭backwards-compatibility.‬

‭○‬ ‭Consider also allowing users to set a minimum TLS version in‬
‭pacman.conf‬‭, defaulting to at least TLS 1.2 (disabling‬‭specific ciphersuites‬
‭supported in 1.2 that are known to be weak‬‭) or, ideally,‬‭TLS 1.3. Otherwise,‬
‭HTTPS downgrade attacks may be possible against TLS-enabled mirrors that‬
‭support older, insecure TLS versions.‬

‭○‬ ‭Update the official Pacman mirror lists to exclude non-TLS mirrors, and‬
‭consider modifying the‬‭reflector‬‭mirror list ranking‬‭tool to take TLS‬
‭settings into account (i.e. ranking mirrors with stricter settings higher).‬

‭2.‬ ‭Transition to signed databases and require them by default.‬‭Currently, Pacman‬
‭gets packages’ depends/replaces lists from the database. With databases being‬
‭unsigned, an attacker with the ability to modify them could induce a user to install‬
‭or remove arbitrary packages.‬

‭○‬ ‭A patch is currently in progress that would check package metadata as listed‬
‭in the database against the metadata contained within the actual signed‬
‭package to be installed, which partially mitigates this issue.‬

‭3.‬ ‭Warn users (or give them the option to be warned) when a package’s signature‬
‭changes during an upgrade, even if the signature is valid.‬‭This will provide a‬
‭defense-in-depth measure against cases where an attacker gains possession of a‬
‭valid signing key and signs a package not previously signed with that key.‬

‭○‬ ‭Consider introducing a setting into pacman.conf that would toggle these‬
‭warnings between “off”, “print only”, and “pause upgrade and interactively‬
‭ask for confirmation to continue” — the latter case being suitable for‬
‭especially cautious users. Depending on how often packages’ signing keys‬
‭change in legitimate cases, the default of this setting could be either “print‬
‭only” (if rare) or “off” (if common).‬

‭4.‬ ‭Provide an interactive resolution prompt in cases where a package and a‬
‭group both exist with the same name.‬‭Currently, Pacman‬‭considers group names‬

‭Trail of Bits‬ ‭25‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF

‭to “shadow” identically-named packages; as such, an attacker who can tag a‬
‭malicious or vulnerable package as belonging to a group with the same name as a‬
‭common package — for instance, by manipulating an unsigned database — can‬
‭cause users to unwittingly install the package of his choice. In the event of a conflict,‬
‭the user should be prompted to make an explicit selection (in the same manner as‬
‭“provides” induces).‬

‭5.‬ ‭Have Pacman refuse to load its keyring, config files, or hooks if they are‬
‭writable by users other than root.‬‭Analogous to SSH’s‬‭permissions checks on the‬
‭~/.ssh‬‭directory, this prevents users from unknowingly‬‭directing Pacman (which is‬
‭likely running as root) to use a keyring, configuration, or hook that a lower-privileged‬
‭user or service could maliciously modify, which could permit privilege escalation.‬

‭6.‬ ‭Establish a detailed, written incident response plan that defines how to‬
‭respond to high-severity threat scenarios,‬‭especially‬‭the following. The plan‬
‭should detail precisely who is responsible for threat response, and the exact steps‬
‭they should follow to mitigate the threat. Having such guidance in place ensures‬
‭that there is no ambiguity about how to handle a security incident when it actually‬
‭happens, ensuring the fastest and most thorough response possible.‬

‭○‬ ‭Compromise of a Main Signer Key.‬

‭○‬ ‭Compromise of a Packager Key.‬

‭○‬ ‭Compromise of a DevOps-managed property such as the Arch Linux Gitlab‬
‭account, Keycloak SSO instance, etc.‬

‭7.‬ ‭Establish procedures for regularly validating Trusted Signers’ Main Signer Key‬
‭and Revocation Key backups over time‬‭, to ensure that‬‭they remain usable and‬
‭readily accessible. In addition, provide detailed guidance on how operators should‬
‭configure and use cold storage backups, ensuring redundancy in case their primary‬
‭keypair is corrupted.‬

‭○‬ ‭Test not only the accessibility and integrity of the backup media, but also the‬
‭viability of the keys in question: for instance, import revocation keys into a‬
‭test keyring on a regular basis to ensure that they do indeed revoke the‬
‭expected signing keys.‬

‭8.‬ ‭Establish a written list of procedures and requirements for onboarding a new‬
‭Trusted Signer.‬‭Currently, any potential new Trusted‬‭Signer must be well-known to‬
‭the Arch Linux team, and a long-term participant within the Arch ecosystem,‬
‭meaning that candidates are already extensively vetted. Formalizing this process‬
‭would reduce the likelihood of mistakes or exceptions being made.‬

‭Trail of Bits‬ ‭26‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭○‬ ‭Consider verifying trusted signers’ legal IDs.‬‭The current onboarding‬
‭process, while in effect vetting candidates’ real-world identities quite‬
‭extensively, does not require actual verification of their legal IDs. Doing so‬
‭would add an additional layer of defense-in-depth and better allow the Arch‬
‭team to hold a defecting signer legally accountable if necessary.‬

‭9.‬ ‭Establish standards for regular check-ups on Packagers.‬‭Currently, Trusted‬
‭Signers make a best-effort attempt to identify Packagers who are inactive or are not‬
‭fulfilling their duties; however, this is not done systematically or at regular intervals.‬
‭To minimize the chance that inactive or irresponsible signers slip through the‬
‭cracks.‬

‭10.‬‭Establish clear security guidelines for‬‭Trusted Signers‬‭and Packagers, including‬
‭how to generate, store, and use key material, how to report a compromise of their‬
‭own key material, what to do if a Trusted Signer reports a compromise, and so on.‬

‭○‬ ‭Notably, require Packagers to keep key material on hardware keys only.‬
‭Currently, this practice is strongly encouraged, but not mandated, and some‬
‭Packagers sign using key material on their local filesystems.‬

‭11.‬‭Consider replacing uses of MD5 with a hashing algorithm with a lower chance‬
‭of hash collision, such as BLAKE2.‬‭MD5 has a nontrivial‬‭chance of collisions, and it‬
‭is feasible to intentionally craft a file with a specific MD5 hash. Some .pacsave‬
‭backups, which use MD5 hashing to compare files, may not occur in the case of a‬
‭hash collision even if the files in question do actually differ. However, performance‬
‭or compatibility considerations may prohibit the use of algorithms with lower rates‬
‭of hash collision.‬

‭Trail of Bits‬ ‭27‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Automated Testing‬

‭Trail of Bits uses automated techniques to extensively test the security properties of‬
‭software. We use both open-source static analysis and fuzzing utilities, along with tools‬
‭developed in house, to perform automated testing of source code and compiled software.‬

‭Test Harness Configuration‬
‭We used the following tools in the automated testing phase of this project:‬

‭Tool‬ ‭Description‬ ‭Policy‬

‭scan-build‬ ‭A static analysis tool that can find various issues within‬
‭C/C++ codebases.‬

‭Default checks‬

‭libFuzzer‬ ‭An in-process, coverage-guided, evolutionary fuzzing‬
‭engine. LibFuzzer can automatically generate a set of inputs‬
‭that exercise as many code paths in the program as‬
‭possible.‬

‭Appendix D‬

‭Areas of Focus‬
‭Our automated testing and verification work focused on the following system properties:‬

‭●‬ ‭The program does not access invalid memory addresses.‬

‭●‬ ‭The program does not exercise undefined behavior.‬

‭Test Results‬
‭The results of this focused testing are detailed below.‬

‭Fuzzing harnesses.‬‭The fuzzing harnesses we developed‬‭that exercise a subset of the‬
‭program's code.‬

‭Property‬ ‭Tool‬ ‭Result‬

‭fuzz_string_length‬‭– harness that checks one of utility‬
‭functions that computes the length of a string, omitting‬
‭ANSI escape codes‬

‭libFuzzer‬ ‭TOB-PACMAN-4‬

‭fuzz_wordsplit‬‭– harness that checks one of utility‬
‭functions that splits a string into multiple words‬

‭libFuzzer‬ ‭Did not find issues‬

‭Trail of Bits‬ ‭28‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://clang-analyzer.llvm.org/scan-build.html
https://llvm.org/docs/LibFuzzer.html

‭fuzz_parseconfigfile‬‭– harness that tests the parsing‬
‭of config files. Requires further changes so it is chrooted‬
‭and so that the parser doesn't include external files from‬
‭the file system.‬

‭libFuzzer‬ ‭Requires further‬
‭development (see‬
‭Appendix D‬‭)‬

‭fuzz_alpm_extract_keyid‬‭– harness that tests the‬
‭extraction of keys from signature data‬

‭libFuzzer‬ ‭TOB-PACMAN-9‬

‭Trail of Bits‬ ‭29‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭Although the code attempts to test the computed‬
‭indexes or path lengths, the project does not take‬
‭specific measures to ensure arithmetic safety. For‬
‭example, we found an instance where an integer‬
‭underflow occurred in a length check function.‬
‭Additionally, oftentimes the length check values are‬
‭computed from hardcoded integer constants, instead of‬
‭using the‬‭sizeof()‬‭operator to compute the length‬‭of‬
‭the hardcoded string from which the integer constant‬
‭length is derived.‬

‭Moderate‬

‭Auditing‬ ‭Pacman generally preserves standard error from‬
‭subprocesses (e.g., hooks), and produces useful, detailed‬
‭messages when package operations encounter errors.‬

‭Satisfactory‬

‭Authentication /‬
‭Access Controls‬

‭Pacman itself does not require authentication or attempt‬
‭to authenticate to other services.‬

‭Not‬
‭Applicable‬

‭Complexity‬
‭Management‬

‭Pacman’s codebase is neatly organized, with discrete‬
‭functionality organized into separate files and functions,‬
‭accompanied by clear comments and documentation.‬

‭Strong‬

‭Configuration‬ ‭Pacman calls out to well-vetted third-party libraries for‬
‭complex functionality such as downloads (libcurl) and‬
‭signature verification (OpenSSL), and uses those libraries‬
‭according to their respective best practices.‬

‭Strong‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭Pacman uses OpenSSL for all cryptographic operations.‬

‭Arch Linux’s signing infrastructure has built-in resilience‬
‭measures such as physical key backups, quorum‬
‭requirements, and public oversight. However, no written‬

‭Satisfactory‬

‭Trail of Bits‬ ‭30‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Category‬ ‭Summary‬ ‭Result‬

‭incident response plans exist. This could increase the‬
‭team’s response time in the event the signing‬
‭infrastructure is compromised.‬

‭Data Handling‬ ‭While the code generally attempts to verify the data it‬
‭receives, there were certain cases where the performed‬
‭checks were insufficient and could cause memory‬
‭corruption or undefined behavior.‬

‭Moderate‬

‭Documentation‬ ‭Pacman and‬‭libalpm‬‭are both extensively documented,‬
‭including in code comments, documentation, man pages,‬
‭and on the Arch Linux wiki.‬

‭Strong‬

‭Maintenance‬ ‭Some issues were discovered in how Arch Linux team‬
‭members maintain the signing infrastructure itself. While‬
‭the Arch team occasionally audits package signers on an‬
‭informal basis, no formal process has been defined for‬
‭how, and how often, such audits should take place. In‬
‭addition, revocation key backups are not checked‬
‭regularly after they are first generated; if a backup fails,‬
‭signers may be unable to revoke a compromised key in a‬
‭timely manner.‬

‭Moderate‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭We uncovered some instances of memory safety issues‬
‭where certain parsing routines were able to read‬
‭memory out-of-bounds. We recommend fuzzing those‬
‭and other code paths regularly to cover more edge cases‬
‭and help catch new problems.‬

‭Errors are generally handled consistently within the‬
‭codebase, though there were cases where allocation‬
‭failures were not acted upon apart from logging, though‬
‭this could be hard to recover from. Additionally, the code‬
‭could benefit from better distinction of status code‬
‭return type for its public functions (instead of being an‬
‭int‬‭type).‬

‭Weak‬

‭Testing and‬
‭Verification‬

‭Pacman has substantial test coverage for expected‬
‭functionality, but none that focuses on unexpected‬
‭inputs or potentially malicious behavior (e.g. fuzz tests).‬

‭Moderate‬

‭Trail of Bits‬ ‭31‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭Use-after-free vulnerability in the print_packages‬
‭function‬

‭Undefined‬
‭Behavior‬

‭Low‬

‭2‬ ‭Null pointer dereferences‬ ‭Denial of Service‬ ‭Informational‬

‭3‬ ‭Allocation failures can lead to memory leaks or‬
‭null pointer dereferences‬

‭Undefined‬
‭Behavior‬

‭Informational‬

‭4‬ ‭Buffer overflow read in string_length utility‬
‭function‬

‭Data Validation‬ ‭Undetermined‬

‭5‬ ‭Undefined behavior or potential null pointer‬
‭dereferences by passing null pointers to functions‬
‭requiring non-null arguments‬

‭Data Validation‬ ‭Undetermined‬

‭6‬ ‭Undefined behavior from use of atoi‬ ‭Undefined‬
‭Behavior‬

‭Informational‬

‭7‬ ‭Database parsers fail silently if an option is not‬
‭recognized‬

‭Data Validation‬ ‭Informational‬

‭8‬ ‭Cache cleaning function may delete the wrong‬
‭files‬

‭Data Validation‬ ‭Informational‬

‭9‬ ‭Integer underflow in a length check leading to‬
‭out-of-bounds read in alpm_extract_keyid‬

‭Data Validation‬ ‭Undetermined‬

‭Trail of Bits‬ ‭32‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Detailed Findings‬

‭1. Use-after-free vulnerability in the print_packages function‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-PACMAN-1‬

‭Target:‬‭pacman/src/pacman/util.c‬

‭Description‬
‭The‬‭print_packages‬‭function has a use-after-free vulnerability.‬‭It first deallocates‬
‭memory for the‬‭temp‬‭variable and then uses that memory‬‭in the‬‭PRINT_FORMAT_STRING‬
‭macro (figure 1.1). This can lead to:‬

‭●‬ ‭Potential exploitation of the program if an attacker would be able to allocate and‬
‭control the content of the‬‭temp‬‭variable after it‬‭is freed (1) and before it is used (2)‬
‭in another thread. Note that the time window for it is very small since the two‬
‭operations happen one after another.‬

‭●‬ ‭A double free which if detected by the allocator, would cause a program crash. The‬
‭second free is called in the‬‭PRINT_FORMAT_STRING‬‭macro.‬

‭The severity of this finding is low since the first scenario should not be possible because‬
‭Pacman doesn't use multiple threads.‬

‭This issue has been found with the‬‭scan-build‬‭static‬‭analyzer.‬

‭void‬‭print_packages(‬‭const‬‭alpm_list_t‬‭*packages) {‬
‭...‬
‭/* %s : size */‬
‭if‬‭(strstr(temp,‬‭"%s"‬‭))‬‭{‬

‭char‬‭*size;‬
‭pm_asprintf(&size,‬‭"%jd"‬‭,‬‭(‬‭intmax_t‬‭)pkg_get_size(pkg));‬
‭string‬‭=‬‭strreplace(temp,‬‭"%s"‬‭,‬‭size);‬
‭free(size);‬
‭free(temp);‬‭// (1) memory pointed by the temp variable‬‭is freed‬

‭}‬
‭/* %u : url */‬
‭PRINT_FORMAT_STRING(temp,‬‭"%u"‬‭,‬‭alpm_pkg_get_url)‬‭// (2) use-after-free of temp‬

‭Figure 1.1:‬‭pacman/src/pacman/util.c#L1258-1267‬

‭#define PRINT_FORMAT_STRING(temp, format, func) \‬

‭Trail of Bits‬ ‭33‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://clang-analyzer.llvm.org/scan-build.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L1258-1267

‭if(strstr(temp, format)) { \‬
‭string = strreplace(temp, format, func(pkg)); \‬
‭free(temp); \‬
‭temp = string; \‬

‭} \‬

‭Figure 1.2: The‬‭PRINT_FORMAT_STRING‬‭macro definition‬

‭This issue can also be detected with tools such as Valgrind (figure 1.3) or AddressSanitizer.‬

‭# valgrind ./pacman -S --print --print-format '%s' valgrind‬
‭==‬‭2084‬‭==‬‭Memcheck,‬‭a‬‭memory‬‭error‬‭detector‬
‭==‬‭2084‬‭==‬‭Copyright‬‭(C)‬‭2002-2022‬‭,‬‭and‬‭GNU‬‭GPL'd,‬‭by‬‭Julian‬‭Seward‬‭et‬‭al.‬
‭==‬‭2084‬‭==‬‭Using‬‭Valgrind‬‭-3.21.0‬‭and‬‭LibVEX;‬‭rerun‬‭with‬‭-h‬‭for‬‭copyright‬‭info‬
‭==‬‭2084‬‭==‬‭Command:‬‭./pacman‬‭-S‬‭--print‬‭--print-format‬‭%s‬‭valgrind‬
‭==‬‭2084‬‭==‬
‭==‬‭2084‬‭==‬‭Invalid‬‭read‬‭of‬‭size‬‭1‬
‭==‬‭2084‬‭==‬ ‭at‬‭0x484D11D‬‭:‬‭strstr‬‭(vg_replace_strmem.c:‬‭1792‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x12620B‬‭:‬‭print_packages‬‭(util.c:‬‭1267‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F9DA‬‭:‬‭sync_prepare_execute‬‭(sync.c:‬‭817‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F550‬‭:‬‭sync_trans‬‭(sync.c:‬‭728‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11FF72‬‭:‬‭pacman_sync‬‭(sync.c:‬‭965‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11B5EB‬‭:‬‭main‬‭(pacman.c:‬‭1259‬‭)‬
‭==‬‭2084‬‭==‬ ‭Address‬‭0x65e61d0‬‭is‬‭0‬‭bytes‬‭inside‬‭a‬‭block‬‭of‬‭size‬‭3‬‭free'd‬
‭==‬‭2084‬‭==‬ ‭at‬‭0x484412F‬‭:‬‭free‬‭(vg_replace_malloc.c:‬‭974‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x1261F2‬‭:‬‭print_packages‬‭(util.c:‬‭1264‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F9DA‬‭:‬‭sync_prepare_execute‬‭(sync.c:‬‭817‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F550‬‭:‬‭sync_trans‬‭(sync.c:‬‭728‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11FF72‬‭:‬‭pacman_sync‬‭(sync.c:‬‭965‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11B5EB‬‭:‬‭main‬‭(pacman.c:‬‭1259‬‭)‬
‭==‬‭2084‬‭==‬ ‭Block‬‭was‬‭alloc'd‬‭at‬
‭==‬‭2084‬‭==‬ ‭at‬‭0x4841848‬‭:‬‭malloc‬‭(vg_replace_malloc.c:‬‭431‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x4A183DE‬‭:‬‭strdup‬‭(strdup.c:‬‭42‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x125ACB‬‭:‬‭print_packages‬‭(util.c:‬‭1198‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F9DA‬‭:‬‭sync_prepare_execute‬‭(sync.c:‬‭817‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11F550‬‭:‬‭sync_trans‬‭(sync.c:‬‭728‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11FF72‬‭:‬‭pacman_sync‬‭(sync.c:‬‭965‬‭)‬
‭==‬‭2084‬‭==‬ ‭by‬‭0x11B5EB‬‭:‬‭main‬‭(pacman.c:‬‭1259‬‭)‬
‭...‬
‭==2084== ERROR SUMMARY: 50 errors from 40 contexts (suppressed: 0 from 0)‬

‭Figure 1.3: Detecting the bug with Valgrind‬

‭Exploit Scenario‬
‭Pacman starts using multiple threads and uses the‬‭print_packages‬‭function in one‬
‭thread and performs an allocation of a similar size to the freed‬‭temp‬‭variable in another‬
‭thread with attacker-controlled content. The attacker leverages this fact to exploit the‬
‭program by manipulating its heap memory through the vulnerable code path.‬

‭Trail of Bits‬ ‭34‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Recommendations‬
‭Short term, add an assignment of‬‭temp = string;‬‭after‬‭the temp variable is freed in the‬
‭vulnerable code path in the‬‭print_packages‬‭function. This will prevent the use-after-free‬
‭issue.‬

‭Long term, regularly scan the code with static analyzers like scan-build.‬

‭Trail of Bits‬ ‭35‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭2. Null pointer dereferences‬

‭Severity:‬‭Informational‬ ‭Difficulty: Low‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-PACMAN-2‬

‭Target:‬
‭●‬ ‭pacman/src/pacman/callback.c:656-660‬
‭●‬ ‭pacman/lib/libalpm/util.c:469-481‬

‭Description‬
‭The cb_progress function first checks if a‬‭pkgname‬‭is a null pointer in a ternary operator (1)‬
‭and then may use that‬‭pkgname‬‭in order to format a‬‭string in (2) or (3) (figure 2.1). This‬
‭leads to a crash if the‬‭pkgname‬‭is a null pointer.‬

‭The severity of this finding is informational since if the‬‭cb_progress‬‭function would be‬
‭called with a null pointer, the program crash would be evident for the program users and‬
‭developers.‬

‭void‬‭cb_progress(‬‭void‬‭*ctx,‬‭alpm_progress_t‬‭event,‬‭const‬‭char‬‭*pkgname,‬
‭int‬‭percent,‬‭size_t‬‭howmany,‬‭size_t‬‭current)‬‭{‬

‭...‬
‭len‬‭=‬‭strlen(opr)‬‭+‬‭((pkgname)‬‭?‬‭strlen(pkgname)‬‭:‬‭0‬‭)‬‭+‬‭2‬‭;‬ ‭// <--- (1)‬
‭wcstr‬‭=‬‭calloc(len,‬‭sizeof‬‭(‬‭wchar_t‬‭));‬
‭/* print our strings to the alloc'ed memory */‬
‭#if defined(HAVE_SWPRINTF)‬
‭wclen‬‭=‬‭swprintf(wcstr,‬‭len,‬‭L‬‭"%s %s"‬‭,‬‭opr,‬‭pkgname);‬ ‭// <--- (2)‬
‭#else‬
‭/* because the format string was simple, we can easily do this without‬
‭* using swprintf, although it is probably not as safe/fast. The max‬
‭* chars we can copy is decremented each time by subtracting the length‬
‭* of the already printed/copied wide char string. */‬
‭wclen‬‭=‬‭mbstowcs(wcstr,‬‭opr,‬‭len);‬
‭wclen‬‭+=‬‭mbstowcs(wcstr‬‭+‬‭wclen,‬‭" "‬‭,‬‭len‬‭-‬‭wclen);‬
‭wclen‬‭+=‬‭mbstowcs(wcstr‬‭+‬‭wclen,‬‭pkgname,‬‭len‬‭-‬‭wclen);‬ ‭// <--- (3)‬
‭#endif‬

‭Figure 2.1:‬‭pacman/src/pacman/callback.c#L656-660‬

‭An additional case of null pointer dereference is present in the‬
‭_alpm_chroot_write_to_child()‬‭function, if the‬‭out_cb‬‭argument is null.‬

‭Trail of Bits‬ ‭36‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L656-660

‭typedef‬‭ssize_t‬‭(*_alpm_cb_io)(‬‭void‬‭*buf,‬‭ssize_t‬‭len,‬‭void‬‭*ctx);‬

‭// [...]‬

‭static‬‭int‬‭_alpm_chroot_write_to_child‬‭(alpm_handle_t‬‭*handle,‬‭int‬‭fd,‬
‭char‬‭*buf,‬‭ssize_t‬‭*buf_size,‬‭ssize_t‬‭buf_limit,‬
‭_alpm_cb_io‬‭out_cb‬‭,‬‭void‬‭*cb_ctx)‬

‭{‬
‭ssize_t‬‭nwrite;‬

‭if‬‭(*buf_size‬‭==‬‭0‬‭)‬‭{‬
‭/* empty buffer, ask the callback for more */‬
‭if‬‭((*buf_size‬‭=‬‭out_cb(buf,‬‭buf_limit,‬‭cb_ctx)‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭/* no more to write, close the pipe */‬
‭return‬‭-1‬‭;‬

‭}‬
‭}‬

‭Figure 2.2:‬‭pacman/lib/libalpm/util.c#L469-481‬

‭Recommendations‬
‭Short term, fix the potential null pointer dereferences in the‬‭cb_progress‬‭and‬
‭_alpm_chroot_write_to_child‬‭functions.‬

‭Long term, use static analysis tools to detect cases where pointers are dereferenced‬
‭without a preceding null check.‬

‭Trail of Bits‬ ‭37‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/util.c#L469-481

‭3. Allocation failures can lead to memory leaks or null pointer dereferences‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-PACMAN-3‬

‭Target:‬
‭●‬ ‭src/pacman/conf.c‬
‭●‬ ‭PR 96: lib/libalpm/alpm_list.c‬
‭●‬ ‭lib/libalpm/be_sync.c‬

‭Description‬
‭There are a few code paths where allocation failures can lead to further memory leaks or‬
‭null pointer dereferences. Those are:‬

‭●‬ ‭If the‬‭strdup(path)‬‭allocation fails in the‬‭setdefaults‬‭function (1 and 2) (figure‬
‭3.1), then the memory pointed by‬‭rootdir‬‭(2) would‬‭be leaked. This is because the‬
‭SETDEFAULT‬‭macro would enter its error path and return‬‭-1 (3), not freeing the‬
‭previously allocated memory.‬

‭●‬ ‭The‬‭alpm_list_equal_ignore_order‬‭function added in‬‭PR 96 fails to check that‬
‭the‬‭calloc‬‭function returns a non-null value (figure‬‭3.2). If‬‭calloc‬‭were to return‬
‭NULL‬‭, this would lead to a null pointer dereference‬‭later on in the function (line 534).‬

‭●‬ ‭In‬‭_alpm_validate_filename‬‭, the‬‭strlen(filename)‬‭can‬‭be called with a null‬
‭pointer if the‬‭READ_AND_STORE(pkg->filename)‬‭execution‬‭fails to allocate‬
‭memory through the‬‭STRDUP‬‭macro use (figure 3.3).‬

‭The severity of this finding is informational since if an allocation fails, the program would‬
‭likely stop functioning properly as it would fail to allocate any more memory anyway.‬

‭The first part of this issue (pertaining to‬‭conf.c‬‭,‬‭rather than‬‭alpm_list.c‬‭) has been‬
‭found with the‬‭scan-build‬‭static analyzer.‬

‭int‬‭setdefaults‬‭(config_t‬‭*c) {‬
‭alpm_list_t‬‭*i;‬

‭#define SETDEFAULT(opt, val) \‬
‭if(!opt) { \‬

‭opt = val; \‬
‭if(!opt) { return -1; } \‬ ‭// (3)‬

‭}‬

‭if‬‭(c->rootdir)‬‭{‬
‭char‬‭*‬‭rootdir‬‭=‬‭strdup(c->rootdir);‬ ‭// (2)‬

‭Trail of Bits‬ ‭38‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://clang-analyzer.llvm.org/scan-build.html

‭...‬
‭char‬‭path[PATH_MAX];‬
‭if‬‭(!c->dbpath)‬‭{‬

‭snprintf(path,‬‭PATH_MAX,‬‭"%s/%s"‬‭,‬‭rootdir,‬‭&DBPATH[‬‭1‬‭]);‬
‭SETDEFAULT(c->dbpath,‬‭strdup(path));‬ ‭// (1)‬

‭}‬
‭if‬‭(!c->logfile)‬‭{‬

‭snprintf(path,‬‭PATH_MAX,‬‭"%s/%s"‬‭,‬‭rootdir,‬‭&LOGFILE[‬‭1‬‭]);‬
‭SETDEFAULT(c->logfile,‬‭strdup(path));‬ ‭// (1)‬

‭}‬

‭Figure 3.1:‬‭pacman/src/pacman/conf.c#L1139-1153‬

‭511‬ ‭int‬‭SYMEXPORT‬‭alpm_list_equal_ignore_order‬‭(‬‭const‬‭alpm_list_t‬‭*left,‬
‭512‬ ‭const‬‭alpm_list_t‬‭*right,‬‭alpm_list_fn_cmp‬‭fn)‬
‭513 {‬
‭514‬ ‭const‬‭alpm_list_t‬‭*l‬‭=‬‭left;‬
‭515‬ ‭const‬‭alpm_list_t‬‭*r‬‭=‬‭right;‬
‭516‬ ‭int‬‭*matched;‬
‭517‬
‭518‬ ‭if‬‭((l‬‭==‬‭NULL‬‭)‬‭!=‬‭(r‬‭==‬‭NULL‬‭))‬‭{‬
‭519‬ ‭return‬‭0‬‭;‬
‭520‬ ‭}‬
‭521‬
‭522‬ ‭if‬‭(alpm_list_count(l)‬‭!=‬‭alpm_list_count(r))‬‭{‬
‭523‬ ‭return‬‭0‬‭;‬
‭524‬ ‭}‬
‭525‬
‭526‬ ‭matched‬‭=‬‭calloc(alpm_list_count(right),‬‭sizeof‬‭(‬‭int‬‭));‬
‭527‬
‭528‬ ‭for‬‭(l‬‭=‬‭left;‬‭l;‬‭l‬‭=‬‭l->next)‬‭{‬
‭529‬ ‭int‬‭found‬‭=‬‭0‬‭;‬
‭530‬ ‭int‬‭n‬‭=‬‭0‬‭;‬
‭531‬
‭532‬ ‭for‬‭(r‬‭=‬‭right;‬‭r;‬‭r‬‭=‬‭r->next,‬‭n++)‬‭{‬
‭533‬ ‭/* make sure we don't match the same value‬‭twice */‬
‭534‬ ‭if‬‭(matched[n])‬‭{‬
‭535‬ ‭continue‬‭;‬
‭536‬ ‭}‬

‭Figure 3.2:‬‭PR 96: lib/libalpm/alpm_list.c#L511-536‬

‭#define READ_AND_STORE(f) do { \‬
‭READ_NEXT(); \‬
‭STRDUP(f, line, goto error); \‬

‭} while(0)‬

‭#define STRDUP(r, s, action) do { \‬
‭if(s != NULL) { \‬

‭r = strdup(s); \‬
‭if(r == NULL) { \‬

‭Trail of Bits‬ ‭39‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1139-1153
https://gitlab.archlinux.org/pacman/pacman/-/blob/06ca06cf3560e8b0f0e76713d7829277d31e7856/lib/libalpm/alpm_list.c#L511-L536

‭_alpm_alloc_fail(strlen(s)); \‬
‭action; \‬

‭} } \‬
‭else { r = NULL; } } \‬

‭while(0)‬

‭READ_AND_STORE(pkg->filename);‬
‭if‬‭(_alpm_validate_filename(db,‬‭pkg->name,‬‭pkg->filename)‬‭<‬‭0‬‭)‬‭{ ... }‬

‭Figure 3.3:‬‭pacman/lib/libalpm/be_sync.c#L591-595‬

‭Recommendations‬
‭Short term, fix the memory leaks or null pointer dereferences as detailed in this finding.‬

‭Long term, regularly scan the code with static analyzers like scan-build.‬

‭Trail of Bits‬ ‭40‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_sync.c#L591-595

‭4. Buffer overflow read in string_length utility function‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-PACMAN-4‬

‭Target:‬‭src/pacman/util.c‬

‭Description‬
‭The‬‭string_length‬‭utility function (figure 4.1) skips‬‭ANSI color codes when computing the‬
‭length. When a string includes the "‬‭\033‬‭" byte that‬‭starts the ANSI color code sequence but‬
‭does not have the "‬‭m‬‭" character which ends it, the‬‭function will read memory past the end‬
‭of the string, causing a buffer overflow read.‬

‭This can lead to a program crash or other issues, depending on how the function is used.‬

‭static‬‭size_t‬‭string_length‬‭(‬‭const‬‭char‬‭*s) {‬
‭int‬‭len;‬
‭wchar_t‬‭*wcstr;‬

‭if‬‭(!s‬‭||‬‭s[‬‭0‬‭]‬‭==‬‭'\0'‬‭)‬‭{‬
‭return‬‭0‬‭;‬

‭}‬
‭if‬‭(strstr(s,‬‭"\033"‬‭))‬‭{‬

‭char‬‭*‬‭replaced‬‭=‬‭malloc(‬‭sizeof‬‭(‬‭char‬‭)‬‭*‬‭strlen(s));‬
‭int‬‭iter‬‭=‬‭0‬‭;‬
‭for‬‭(;‬‭*s;‬‭s++)‬‭{‬

‭if‬‭(*s‬‭==‬‭'\033'‬‭)‬‭{‬
‭while‬‭(*s‬‭!=‬‭'m'‬‭)‬‭{‬

‭s++;‬
‭}‬

‭}‬‭else‬‭{‬
‭replaced[iter]‬‭=‬‭*s;‬
‭iter++;‬

‭}‬
‭}‬
‭replaced[iter]‬‭=‬‭'\0'‬‭;‬

‭Figure 4.1:‬‭pacman/src/pacman/util.c#L452-473‬

‭Recommendations‬
‭Short term, fix the buffer overflow read issue in the‬‭string_length‬‭function.‬

‭Long term, implement a fuzzing harness for the‬‭string_length‬‭function to make sure it‬
‭doesn't contain any bugs. An example harness code for it can be found in figure 4.2 and‬
‭which can be compiled and run using the following commands:‬

‭Trail of Bits‬ ‭41‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-473

‭clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer‬
‭./fuzzer‬

‭Figure 4.3 shows an example output of such a fuzzer. We also implemented this harness as‬
‭part of the Pacman codebase as detailed in‬‭Appendix‬‭D‬‭.‬

‭#define _XOPEN_SOURCE‬
‭#include‬‭<stdio.h>‬
‭#include‬‭<stdlib.h>‬
‭#include‬‭<stdint.h>‬
‭#include‬‭<string.h>‬
‭#include‬‭<wchar.h>‬

‭static‬‭size_t‬‭string_length(‬‭const‬‭char‬‭*s) { ... }‬

‭int‬‭LLVMFuzzerTestOneInput‬‭(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size)‬‭{‬
‭if‬‭(Size‬‭==‬‭0‬‭)‬‭return‬‭0‬‭;‬

‭// Prepare a null terminated string‬
‭char‬‭*‬‭x‬‭=‬‭malloc(Size+‬‭1‬‭);‬
‭memcpy(x,‬‭Data,‬‭Size);‬
‭x[Size]‬‭=‬‭0‬‭;‬

‭string_length(x);‬

‭free(x);‬
‭return‬‭0‬‭;‬

‭}‬

‭Figure 4.2: Example fuzzing harness that uses‬‭libFuzzer‬‭to test the‬‭string_length‬‭function‬

‭$ clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer‬
‭$./fuzzer‬
‭INFO: Running with entropic power schedule (0xFF, 100).‬
‭INFO: Seed: 1790240281‬
‭INFO: Loaded 1 modules (12 inline 8-bit counters): 12 [0x56046acc5fc0,‬
‭0x56046acc5fcc),‬
‭INFO: Loaded 1 PC tables (12 PCs): 12 [0x56046acc5fd0,0x56046acc6090),‬
‭INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096‬
‭bytes‬
‭INFO: A corpus is not provided, starting from an empty corpus‬
‭#2‬ ‭INITED cov: 4 ft: 5 corp: 1/1b exec/s: 0 rss: 30Mb‬
‭...‬
‭#173‬ ‭REDUCE cov: 5 ft: 6 corp: 2/2b lim: 4 exec/s: 0 rss: 31Mb L: 1/1 MS: 1‬
‭===‬
‭==2873139==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000006b53‬
‭at pc 0x56046ac84a76 bp 0x7ffd09e07ef0 sp 0x7ffd09e07ee8‬
‭READ of size 1 at 0x602000006b53 thread T0‬

‭#0 0x56046ac84a75 in string_length /fuzz/main.c:21:11‬
‭#1 0x56046ac8483d in LLVMFuzzerTestOneInput /fuzz/main.c:56:2‬
‭#2 0x56046abad383 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,‬

‭Trail of Bits‬ ‭42‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://llvm.org/docs/LibFuzzer.html

‭unsigned long) (/fuzz/fuzzer+0x3e383) (BuildId:‬
‭65f386451dc943b740358c52379831570eef52be)‬
‭…‬

‭0x602000006b53 is located 0 bytes to the right of 3-byte region‬
‭[0x602000006b50,0x602000006b53)‬
‭allocated by thread T0 here:‬

‭#0 0x56046ac499fe in malloc (/fuzz/fuzzer+0xda9fe) (BuildId:‬
‭65f386451dc943b740358c52379831570eef52be)‬

‭#1 0x56046ac847db in LLVMFuzzerTestOneInput /root/fuz/main.c:53:12‬
‭...‬

‭SUMMARY: AddressSanitizer: heap-buffer-overflow /root/fuz/main.c:21:11 in‬
‭string_length‬
‭...‬

‭Figure 4.3: Output from the fuzzer from figure 4.2‬

‭Trail of Bits‬ ‭43‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭5. Undefined behavior or potential null pointer dereferences by passing null‬
‭pointers to functions requiring non-null arguments‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-PACMAN-5‬

‭Target:‬‭multiple codepaths‬

‭Description‬
‭There are a few code paths where a null pointer dereference or undefined behavior may‬
‭happen if certain conditions are met. Those issues can be detected with the scan-build‬
‭static analyzer or by building and by running Pacman with the undefined behavior sanitizer.‬
‭The scan-build results were shared along with this report.‬

‭One of the code paths found by scan-build is in the lib/libalpm/remove.c file. The‬
‭closedir(dir)‬‭function may be called with a null pointer‬‭when the condition that calls‬
‭regcomp(...)‬‭is true (figure 5.1). This is undefined‬‭behavior since the‬‭closedir‬‭function‬
‭argument is marked as nonnull.‬

‭static‬‭void‬‭shift_pacsave‬‭(alpm_handle_t‬‭*handle,‬‭const‬‭char‬‭*file) {‬
‭DIR‬‭*dir‬‭=‬‭NULL‬‭;‬
‭...‬
‭if‬‭(regcomp(®,‬‭regstr,‬‭REG_EXTENDED‬‭|‬‭REG_NEWLINE)‬‭!=‬‭0‬‭)‬‭{‬

‭goto‬‭cleanup;‬
‭}‬

‭dir‬‭=‬‭opendir(dirname);‬‭// <-- the dir was only modified‬‭here‬
‭...‬

‭cleanup‬‭:‬
‭free(dirname);‬
‭closedir(dir);‬

‭Figure 5.1:‬‭pacman/lib/libalpm/remove.c#L349-423‬

‭Another case is in the‬‭mount_point_list‬‭function (figure‬‭5.2). If the‬‭STRDUP‬‭macro is‬
‭executed with a null pointer‬‭mnt->mnt_dir‬‭, then the‬‭strlen(mp->mount_dir)‬‭call will‬
‭take a null pointer.‬

‭static‬‭alpm_list_t‬‭*‬‭mount_point_list‬‭(alpm_handle_t‬‭*handle) {‬
‭...‬

‭#if defined(HAVE_GETMNTENT) && defined(HAVE_MNTENT_H)‬
‭...‬
‭while‬‭((mnt‬‭=‬‭getmntent(fp)))‬‭{‬

‭Trail of Bits‬ ‭44‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/remove.c#L349-423

‭CALLOC(mp,‬‭1‬‭,‬‭sizeof‬‭(alpm_mountpoint_t),‬‭RET_ERR(handle,‬
‭ALPM_ERR_MEMORY,‬‭NULL‬‭));‬

‭STRDUP(mp->mount_dir,‬‭mnt->mnt_dir,‬‭free(mp);‬‭RET_ERR(handle,‬
‭ALPM_ERR_MEMORY,‬‭NULL‬‭));‬

‭mp->mount_dir_len‬‭=‬‭strlen(‬‭mp->mount_dir‬‭);‬

‭Figure 5.2:‬‭pacman/lib/libalpm/diskspace.c#L95-116‬

‭In addition to that, figure 5.3 shows a run of pacman with undefined behavior sanitizer that‬
‭detects other cases of this issue.‬

‭# CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson‬
‭setup sanitize‬
‭# cd sanitize‬
‭# CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson‬
‭compile‬
‭# ./pacman -Syuu‬
‭:: Synchronizing package databases...‬
‭core downloading...‬
‭extra downloading...‬
‭:: Starting full system upgrade...‬
‭../lib/libalpm/util.c:1149:9: runtime error: null pointer passed as argument 1,‬
‭which is declared to never be null‬
‭../lib/libalpm/util.c:1151:10: runtime error: null pointer passed as argument 1,‬
‭which is declared to never be null‬
‭../lib/libalpm/util.c:1192:4: runtime error: null pointer passed as argument 2,‬
‭which is declared to never be null‬
‭...‬
‭:: Proceed with installation? [Y/n] Y‬
‭...‬

‭Figure 5.3: Running Pacman with UndefinedBehavior sanitizer‬

‭Recommendation‬
‭Short term, fix the cases where functions marked with non-null arguments are called with‬
‭null pointers.‬

‭Long term, regularly test pacman with undefined behavior sanitizer as well as scanning its‬
‭codebase with static analyzers such as scan-build.‬

‭Trail of Bits‬ ‭45‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/diskspace.c#L95-116

‭6. Undefined behavior from use of atoi‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-PACMAN-6‬

‭Target:‬‭lib/libalpm/be_local.c, src/pacman/pacman.c‬

‭Description‬
‭The‬‭atoi‬‭function is used to convert strings to integers,‬‭when parsing local database files‬
‭and command line arguments (figure 6.1, 6.2). The behavior of‬‭atoi‬‭is undefined in the‬
‭case that the inputted string is not a valid formatted number, or in the case of an overflow.‬
‭The severity of this finding is informational since, in practice,‬‭atoi‬‭will typically return a‬
‭dummy value, such as 0 or -1, in the case of an incorrect input or an overflow.‬

‭}‬‭else‬‭if‬‭(strcmp(line,‬‭"%REASON%"‬‭)‬‭==‬‭0‬‭)‬‭{‬
‭READ_NEXT();‬
‭info->reason‬‭=‬‭(alpm_pkgreason_t)‬‭atoi(line)‬‭;‬

‭Figure 6.1: Use of‬‭atoi‬‭(‬‭lib/libalpm/be_local.c#L774-776‬‭)‬

‭case‬‭OP_ASK‬‭:‬
‭config->noask‬‭=‬‭1‬‭;‬
‭config->ask‬‭=‬‭(‬‭unsigned‬‭int‬‭)‬‭atoi(optarg)‬‭;‬
‭break‬‭;‬

‭...‬
‭case‬‭OP_DEBUG‬‭:‬

‭/* debug levels are made more 'human readable' than‬‭using a raw logmask‬
‭* here, error and warning are set in config_new, though perhaps a‬
‭* --quiet option will remove these later */‬
‭if‬‭(optarg)‬‭{‬

‭unsigned‬‭short‬‭debug‬‭=‬‭(‬‭unsigned‬‭short‬‭)‬‭atoi(optarg)‬‭;‬
‭switch‬‭(debug)‬‭{‬

‭case‬‭2‬‭:‬
‭config->logmask‬‭|=‬‭ALPM_LOG_FUNCTION;‬
‭__attribute__((fallthrough));‬

‭case‬‭1‬‭:‬
‭config->logmask‬‭|=‬‭ALPM_LOG_DEBUG;‬
‭break‬‭;‬

‭default‬‭:‬
‭pm_printf(ALPM_LOG_ERROR,‬‭_(‬‭"'%s' is not a valid‬‭debug‬

‭level\n"‬‭),‬
‭optarg);‬

‭return‬‭1‬‭;‬
‭}‬

‭}‬‭else‬‭{‬

‭Trail of Bits‬ ‭46‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/be_local.c#L774-776

‭config->logmask‬‭|=‬‭ALPM_LOG_DEBUG;‬
‭}‬
‭/* progress bars get wonky with debug on, shut them‬‭off */‬
‭config->noprogressbar‬‭=‬‭1‬‭;‬
‭break‬‭;‬

‭Figure 6.2: Uses of‬‭atoi‬‭(‬‭src/pacman/pacman.c#L382-430‬‭)‬

‭Recommendations‬
‭Short term, use the‬‭strtol‬‭function instead of‬‭atoi‬‭.‬‭Check the‬‭errno‬‭value after calling‬
‭strtol‬‭to check for a failed conversion. Make sure‬‭to perform bounds checking when‬
‭casting the‬‭long‬‭value returned by‬‭strtol‬‭down to‬‭an‬‭int‬‭.‬

‭Trail of Bits‬ ‭47‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/src/pacman/pacman.c#L382-430

‭7. Database parsers fail silently if an option is not recognized‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-PACMAN-7‬

‭Target:‬‭lib/libalpm/be_sync.c, lib/libalpm/be_local.c‬

‭Description‬
‭The‬‭sync_db_read‬‭and‬‭local_db_read‬‭functions, which‬‭are responsible for parsing sync‬
‭database files and local database files respectively, fail silently if an option is not‬
‭recognized. This can cause a configuration option to not be set which may cause issues if,‬
‭for example, the local installation of Pacman is out of date and does not support‬
‭newly-added configuration options.‬

‭Exploit Scenario‬
‭Support for SHA-3 hash verification is added, along with a corresponding configuration‬
‭option‬‭%SHA3SUM%‬‭. Older installations of Pacman, which‬‭do not support this configuration‬
‭option, will instead ignore it. This causes package hashes to not be verified.‬

‭Recommendations‬
‭Short term, add default behavior in the‬‭sync_db_read‬‭and‬‭local_db_read‬‭functions for‬
‭when a configuration option is not recognized. Unrecognized options should cause a log‬
‭message or an error.‬

‭Trail of Bits‬ ‭48‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭8. Cache cleaning function may delete the wrong files‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-PACMAN-8‬

‭Target:‬‭src/pacman/sync.c‬

‭Description‬
‭In the‬‭sync_cleancache‬‭function, a path is constructed‬‭for deletion using the‬‭snprintf‬
‭function. A maximum path length of‬‭PATH_MAX‬‭is given‬‭(on Linux, this value is 4096‬
‭characters). However, there is no check to ensure that the path created by‬‭snprintf‬‭was‬
‭not cut short by the limit. This can lead to a different path than intended getting deleted.‬

‭The severity of this finding is informational since it is highly unlikely that Pacman would use‬
‭a path this long in practice.‬

‭/* build the full filepath */‬
‭snprintf(path,‬‭PATH_MAX,‬‭"%s%s"‬‭,‬‭cachedir,‬‭ent->d_name);‬

‭/* short circuit for removing all files from cache */‬
‭if‬‭(level‬‭>‬‭1‬‭)‬‭{‬

‭ret‬‭+=‬‭unlink_verbose(path,‬‭0‬‭);‬
‭continue‬‭;‬

‭}‬

‭Figure 8.1:‬‭pacman/src/pacman/sync.c#L241-248‬

‭Recommendations‬
‭Short term, add a check which compares the value returned by‬‭snprintf‬‭and ensures that‬
‭it is less than‬‭PATH_MAX‬‭.‬

‭Trail of Bits‬ ‭49‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/sync.c#L241-248

‭9. Integer underflow in a length check leading to out-of-bounds read in‬
‭alpm_extract_keyid‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-PACMAN-9‬

‭Target:‬‭lib/libalpm/signing.c‬

‭Description‬
‭The‬‭alpm_extract_keyid‬‭function (figure 9.1) contains‬‭an out-of-bounds read issue due‬
‭to an integer underflow in‬‭length_check‬‭function when‬‭a specifically crafted input is‬
‭provided (figure 9.2).‬

‭int‬‭SYMEXPORT‬‭alpm_extract_keyid‬‭(alpm_handle_t‬‭*handle,‬‭const‬‭char‬‭*identifier,‬
‭const‬‭unsigned‬‭char‬‭*sig,‬‭const‬‭size_t‬‭len,‬‭alpm_list_t‬‭**keys) {‬

‭size_t‬‭pos,‬‭blen,‬‭hlen,‬‭ulen;‬
‭pos‬‭=‬‭0‬‭;‬

‭while‬‭(pos‬‭<‬‭len)‬‭{‬
‭if‬‭(!(sig[pos]‬‭&‬‭0x80‬‭))‬‭{‬‭... - return signature‬‭format error‬‭}‬

‭if‬‭(sig[pos]‬‭&‬‭0x40‬‭)‬‭{‬
‭/* new packet format */‬
‭if‬‭(length_check(len,‬‭pos,‬‭1‬‭,‬‭handle,‬‭identifier)‬‭!=‬‭0‬‭)‬‭{‬

‭return‬‭-1‬‭;‬
‭}‬
‭pos‬‭=‬‭pos‬‭+‬‭1‬‭;‬

‭Figure 9.1:‬‭pacman/lib/libalpm/signing.c#L1101-1223‬

‭/* Check to avoid out of boundary reads */‬
‭static‬‭size_t‬‭length_check‬‭(‬‭size_t‬‭length,‬‭size_t‬‭position,‬‭size_t‬‭a,‬

‭alpm_handle_t‬‭*handle,‬‭const‬‭char‬‭*identifier) {‬
‭if‬‭(‬‭a‬‭==‬‭0‬‭||‬‭length‬‭-‬‭position‬‭<=‬‭a‬‭)‬‭{‬

‭_alpm_log(handle,‬‭ALPM_LOG_ERROR,‬
‭_(‬‭"%s: signature format error\n"‬‭),‬‭identifier);‬

‭return‬‭-1‬‭;‬
‭}‬‭else‬‭{‬

‭return‬‭0‬‭;‬
‭}‬

‭}‬

‭Figure 9.2:‬‭pacman/lib/libalpm/signing.c#L1043-1054‬

‭Trail of Bits‬ ‭50‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1043-1054

‭The‬‭length_check‬‭function is used to confirm if advancing a position (‬‭pos‬‭) index is safe. It‬
‭is used by‬‭alpm_extract_keyid‬‭for example in the following‬‭way:‬

‭length_check(len, pos, 2, handle, identifier)‬

‭The‬‭len‬‭is the length of the signature buffer (‬‭sig‬‭)‬‭and‬‭pos‬‭is an index in that buffer.‬
‭However, the‬‭pos‬‭index can be bigger than the‬‭len‬‭variable and when that happens, then‬
‭the‬‭length-position‬‭computation in the‬‭length_check‬‭function underflows and the‬
‭function returns 0, leading to the out-of-bounds read.‬

‭We found this issue by fuzzing the‬‭alpm_extract_keyid‬‭function. The fuzzing harness‬
‭code is included in‬‭Appendix D‬‭.‬

‭Recommendation‬
‭Short term, fix the integer underflow issue in the‬‭length_check‬‭function. This will prevent‬
‭out-of-bound reads in the‬‭alpm_extract_keyid‬‭function.‬

‭Long term, fuzz the Pacman functions, for example as shown in‬‭Appendix D‬‭.‬

‭Trail of Bits‬ ‭51‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭52‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭53‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Trail of Bits‬ ‭54‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭55‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭C. Code Quality Findings‬

‭The following recommendations are not associated with specific vulnerabilities. However,‬
‭they enhance code readability and may prevent the introduction of vulnerabilities in the‬
‭future.‬

‭Remove the‬‭if (fd >= 0)‬‭condition in the‬‭_alpm_pkg_load_internal‬‭function‬
‭since it is always true.‬‭This is because if the‬‭fd‬‭is less than 0 the function returns NULL in‬
‭a previous condition.‬

‭alpm_pkg_t‬‭*‬‭_alpm_pkg_load_internal‬‭(alpm_handle_t‬‭*handle,‬
‭const‬‭char‬‭*pkgfile,‬‭int‬‭full) {‬

‭int‬‭ret,‬‭fd;‬
‭...‬
‭fd‬‭=‬‭_alpm_open_archive(handle,‬‭pkgfile,‬‭&st,‬‭&archive,‬‭ALPM_ERR_PKG_OPEN);‬
‭if‬‭(fd‬‭<‬‭0‬‭)‬

‭...‬
‭return‬‭NULL‬‭;‬

‭}‬
‭...‬

‭error‬‭:‬
‭_alpm_pkg_free(newpkg);‬
‭_alpm_archive_read_free(archive);‬
‭if‬‭(fd‬‭>=‬‭0‬‭)‬‭{‬

‭close(fd);‬
‭}‬

‭return‬‭NULL‬‭;‬
‭}‬

‭Figure C.1:‬‭pacman/lib/libalpm/be_package.c#L569-688‬

‭Use the‬‭strdup‬‭function to duplicate a string in the‬‭clean_filename‬‭function.‬‭This‬
‭can be done instead of computing the string length, allocating memory and copying the‬
‭filename with‬‭memcpy‬‭.‬

‭static‬‭char‬‭*‬‭clean_filename‬‭(‬‭const‬‭char‬‭*filename)‬‭{‬
‭int‬‭len‬‭=‬‭strlen(filename);‬
‭char‬‭*p;‬
‭char‬‭*fname‬‭=‬‭malloc(len‬‭+‬‭1‬‭);‬
‭memcpy(fname,‬‭filename,‬‭len‬‭+‬‭1‬‭);‬

‭Figure C.2:‬‭pacman/src/pacman/callback.c#L755-760‬

‭Trail of Bits‬ ‭56‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_package.c#L569-688
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L755-760

‭Refactor the dead assignment to the‬‭curlerr‬‭variable in the‬
‭curl_check_finished_download function.‬‭The assignment‬‭should be either removed or‬
‭there should be code that would act upon its value.‬

‭static‬‭int‬‭curl_check_finished_download‬‭(alpm_handle_t‬‭*handle,‬‭CURLM‬‭*curlm,‬‭CURLMsg‬
‭*msg,‬‭const‬‭char‬‭*localpath,‬‭int‬‭*active_downloads_num)‬‭{‬

‭...‬
‭CURLcode‬‭curlerr;‬
‭...‬

‭case‬‭CURLE_ABORTED_BY_CALLBACK‬‭:‬
‭/* handle the interrupt accordingly */‬
‭if‬‭(dload_interrupted‬‭==‬‭ABORT_OVER_MAXFILESIZE)‬‭{‬

‭curlerr‬‭=‬‭CURLE_FILESIZE_EXCEEDED;‬
‭payload->unlink_on_fail‬‭=‬‭1‬‭;‬
‭handle->pm_errno‬‭=‬‭ALPM_ERR_LIBCURL;‬
‭_alpm_log(handle,‬‭ALPM_LOG_ERROR,‬

‭_(‬‭"failed retrieving file '%s' from %s :‬
‭expected download size exceeded\n"‬‭),‬

‭payload->remote_name,‬‭hostname);‬
‭server_soft_error(handle,‬‭payload->fileurl);‬

‭}‬
‭goto‬‭cleanup;‬

‭...‬
‭cleanup‬‭:‬

‭...‬‭// <-- code that does not use the curlerr variable‬
‭return‬‭ret;‬

‭}‬

‭Figure C.3:‬‭pacman/lib/libalpm/dload.c#L535-546‬

‭Remove the‬‭r‬‭variable from the‬‭_cache_mtree_open‬‭function‬‭and an assignment to‬
‭it since it is unused.‬‭Alternatively, if it is intended,‬‭use the value of‬‭r‬‭within the if‬
‭condition.‬

‭static‬‭struct‬‭archive‬‭*_cache_mtree_open(alpm_pkg_t‬‭*pkg) {‬
‭int‬‭r;‬
‭...‬
‭if‬‭(‬‭(r‬‭=‬‭_alpm_archive_read_open_file(mtree,‬‭mtfile,‬‭ALPM_BUFFER_SIZE))‬‭)‬‭{‬

‭_alpm_log(pkg->handle,‬‭ALPM_LOG_ERROR,‬‭_(‬‭"error‬‭while reading file %s:‬
‭%s\n"‬‭),‬

‭mtfile,‬‭archive_error_string(mtree));‬
‭_alpm_archive_read_free(mtree);‬
‭GOTO_ERR(pkg->handle,‬‭ALPM_ERR_LIBARCHIVE,‬‭error);‬

‭}‬

‭free(mtfile);‬
‭return‬‭mtree;‬

‭error‬‭:‬
‭free(mtfile);‬
‭return‬‭NULL‬‭;‬

‭Trail of Bits‬ ‭57‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L535-546

‭}‬

‭Figure C.4:‬‭pacman/lib/libalpm/be_local.c#L251-284‬

‭Return an error if the call to‬‭malloc‬‭fails in‬‭alpm_list_add_sorted‬‭function.‬
‭Currently, the function returns the existing list, even though it failed to insert the element‬
‭as expected. This function is currently unused, so this does not yet pose a security concern.‬

‭add‬‭=‬‭malloc(‬‭sizeof‬‭(alpm_list_t));‬
‭if‬‭(add‬‭==‬‭NULL‬‭)‬‭{‬

‭return‬‭list;‬
‭}‬

‭Figure C.5:‬‭pacman/lib/libalpm/alpm_list.c#L115-118‬

‭Restore the‬‭list‬‭variable to its original state before‬‭returning in the‬
‭alpm_list_reverse‬‭function.‬‭In the beginning of the‬‭function, the‬‭list->prev‬‭member‬
‭is backed up and then modified. However, in the case of an error, this backup is not‬
‭restored, leaving the list in an invalid state.‬

‭alpm_list_t‬‭SYMEXPORT‬‭*alpm_list_reverse(alpm_list_t‬‭*list) {‬
‭const‬‭alpm_list_t‬‭*lp;‬
‭alpm_list_t‬‭*newlist‬‭=‬‭NULL‬‭,‬‭*backup;‬

‭if‬‭(list‬‭==‬‭NULL‬‭)‬‭{‬
‭return‬‭NULL‬‭;‬

‭}‬

‭lp‬‭=‬‭alpm_list_last(list);‬
‭/* break our reverse circular list */‬
‭backup‬‭=‬‭list->prev;‬
‭list->prev‬‭=‬‭NULL‬‭;‬

‭while‬‭(lp)‬‭{‬
‭if‬‭(alpm_list_append(&newlist,‬‭lp->data)‬‭==‬‭NULL‬‭)‬‭{‬

‭alpm_list_free(newlist);‬
‭return‬‭NULL‬‭;‬

‭}‬
‭lp‬‭=‬‭lp->prev;‬

‭}‬
‭list->prev‬‭=‬‭backup;‬‭/* restore tail pointer */‬
‭return‬‭newlist;‬

‭}‬

‭Figure C.6:‬‭pacman/lib/libalpm/alpm_list.c#L403-426‬

‭Rename the‬‭type‬‭variable to‬‭event‬‭in the‬‭alpm_list_reverse‬‭function.‬‭When a‬
‭download payload is sent over a pipe in PR 23 (from‬‭the‬‭_alpm_sandbox_cb_dl‬‭function‬

‭Trail of Bits‬ ‭58‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L251-284
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L115-118
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L403-426
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L126

‭to‬‭the‬‭_alpm_sandbox_process_cb_download‬‭function‬‭), a variable called‬‭event‬‭is sent‬
‭through the pipe and received into a variable called‬‭type‬‭. This can cause confusion when‬
‭reading the sending and receiving code.‬

‭Rework the‬‭had_error‬‭variable in the‬‭curl_download_internal_sandboxed‬
‭function.‬‭The variable will always be set to‬‭true‬‭by the time the loop shown in figure C.7‬
‭exits. This is because every‬‭break‬‭statement is accompanied‬‭with a statement setting‬
‭had_error‬‭to‬‭true‬‭. This means that the variable does‬‭not track any useful information.‬

‭bool‬‭had_error‬‭=‬‭false‬‭;‬
‭while‬‭(‬‭true‬‭)‬‭{‬

‭_alpm_sandbox_callback_t‬‭callback_type;‬
‭ssize_t‬‭got‬‭=‬‭read(callbacks_fd[‬‭0‬‭],‬‭&callback_type,‬‭sizeof‬‭(callback_type));‬
‭if‬‭(got‬‭<‬‭0‬‭||‬‭(‬‭size_t‬‭)got‬‭!=‬‭sizeof‬‭(callback_type))‬‭{‬

‭had_error‬‭=‬‭true‬‭;‬
‭break‬‭;‬

‭}‬

‭if‬‭(callback_type‬‭==‬‭ALPM_SANDBOX_CB_DOWNLOAD)‬‭{‬
‭if‬‭(!_alpm_sandbox_process_cb_download(handle,‬‭callbacks_fd[‬‭0‬‭]))‬‭{‬

‭had_error‬‭=‬‭true‬‭;‬
‭break‬‭;‬

‭}‬
‭}‬
‭else‬‭if‬‭(callback_type‬‭==‬‭ALPM_SANDBOX_CB_LOG)‬‭{‬

‭if‬‭(!_alpm_sandbox_process_cb_log(handle,‬‭callbacks_fd[‬‭0‬‭]))‬‭{‬
‭had_error‬‭=‬‭true‬‭;‬
‭break‬‭;‬

‭}‬
‭}‬

‭}‬

‭if‬‭(had_error)‬‭{‬
‭kill(pid,‬‭SIGTERM);‬

‭}‬

‭Figure C.7:‬‭PR 23: pacman/lib/libalpm/dload.c#L974-1000‬

‭Verify the‬‭%REASON%‬‭field before casting it to an‬‭alpm_pkgreason_t‬‭enum value in‬
‭the‬‭local_db_read‬‭function.‬‭Otherwise, the field may‬‭contain a value which is a valid‬
‭integer but not a valid‬‭alpm_pkgreason_t‬‭value.‬

‭}‬‭else‬‭if‬‭(strcmp(line,‬‭"%REASON%"‬‭)‬‭==‬‭0‬‭)‬‭{‬
‭READ_NEXT();‬
‭info->reason‬‭=‬‭(alpm_pkgreason_t)atoi(line);‬

‭Figure C.8:‬‭pacman/lib/libalpm/be_local.c#L774-776‬

‭Trail of Bits‬ ‭59‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L180
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/dload.c#L974-1000
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L774-776

‭Correct the log message at the end of the‬‭curl_download_internal‬‭function.‬‭The‬
‭message incorrectly states the value returned by the function.‬

‭_alpm_log(handle,‬‭ALPM_LOG_DEBUG,‬‭"curl_download_internal‬‭return code is %d\n"‬‭,‬
‭err);‬
‭return‬‭err‬‭?‬‭-1‬‭:‬‭updated‬‭?‬‭0‬‭:‬‭1‬‭;‬

‭Figure C.9:‬‭pacman/lib/libalpm/dload.c#L937-938‬

‭Refactor the ALPM public functions from returning an‬‭int‬‭to return a status type.‬
‭This new type could be a typedef for an‬‭int‬‭. Such‬‭a change would make it easier to‬
‭perform static analysis to find all functions that return the typedef and ensure that the‬
‭callers check for errors.‬

‭[Errors]‬

‭The library provides a global variable pm_errno.‬
‭It aims at being to the library what errno is for C system calls.‬

‭Almost all public library functions are returning an integer value: 0‬
‭indicating success, -1 indicating a failure.‬
‭If -1 is returned, the variable pm_errno is set to a meaningful value‬
‭Wise frontends should always care for these returned values.‬

‭Note: the helper function alpm_strerror() can also be used to translate one‬
‭specified error code into a more friendly sentence, and alpm_strerrorlast()‬
‭does the same for the last error encountered (represented by pm_errno).‬

‭Figure C.10:‬‭pacman/README?plain=1#L144-156‬

‭Trail of Bits‬ ‭60‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L937-938
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/README?plain=1#L144-156

‭D. Fuzzing Pacman code‬

‭During the audit, Trail of Bits used fuzzing, an automated testing technique in which code‬
‭paths are executed with random data to find bugs resulting from the incorrect handling of‬
‭unexpected data. For this, we used‬‭libFuzzer‬‭, an in-process‬‭coverage-guided fuzzer, and we‬
‭extended the Pacman build system with new executables to fuzz certain code paths. This‬
‭helped us to find issues detailed in findings‬‭TOB-PACMAN-4‬‭and‬‭TOB-PACMAN-9‬‭.‬

‭We implemented fuzzing harnesses for:‬

‭●‬ ‭The‬‭string_length‬‭function‬
‭●‬ ‭The‬‭wordsplit‬‭function‬
‭●‬ ‭Parsing of config files through the‬‭parseconfigfile‬‭function‬
‭●‬ ‭The extraction of keys from signature data through the‬‭alpm_extract_keyid‬

‭function‬

‭For this, we also modified the‬‭meson.build‬‭file so‬‭that all the files are built with‬
‭AddressSanitizer‬‭(‬‭-fsanitize=address‬‭compiler and‬‭linker flag) that helps detect more‬
‭bugs. In order to build the harnesses and run them, we leveraged the following commands:‬

‭CC=clang meson setup fuzz‬
‭cd fuzz‬
‭CC=clang meson compile <harness, e.g., fuzz_alpm_extract_keyid>‬
‭./<harness binary>‬

‭We used the clang compiler because in our case, where we performed fuzzing in an Arch‬
‭Linux docker container, the GCC compiler did not support the‬‭-fsanitize=fuzzer‬‭flag‬
‭that enables the libFuzzer fuzzing framework.‬

‭The implemented code can be seen in figure D.1 and will also be sent as a merge request‬
‭against the Pacman repository after the final readout of this report.‬

‭Fuzzing harness notes‬
‭Below we present some notes about the changes and harnesses we developed.‬

‭●‬ ‭The‬‭add_project_arguments‬‭added to the‬‭meson.build‬‭is suboptimal and has‬
‭to be refactored, so it is enabled only when fuzzing harnesses are built, or the‬
‭specific dependencies/libraries need to have separate fuzzing targets so they are‬
‭built with AddressSanitizer enabled.‬

‭●‬ ‭None of the external dependencies are built with AddressSanitizer or‬
‭UndefinedBehavior sanitizer. This may cause false positive crashes when new‬
‭harnesses are developed that leverage the code paths of those dependencies, or it‬
‭may lead to not detecting valid bugs.‬

‭Trail of Bits‬ ‭61‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://llvm.org/docs/LibFuzzer.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-490
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/common/util-common.c#L238-337
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1192-1197
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://github.com/google/sanitizers/wiki/AddressSanitizer

‭●‬ ‭We encountered some issues with including headers from‬‭src/pacman‬‭in‬
‭fuzz_parseconfigfile‬‭and‬‭fuzz_string_length‬‭harnesses,‬‭which we worked‬
‭around by providing the fuzzed function declarations in the harnesses itself. This‬
‭should be fixed so that the headers are included properly. The same goes for, e.g.,‬
‭the‬‭extern void *config;‬‭global variable.‬

‭●‬ ‭The‬‭fuzz_wordsplit‬‭harness can be refactored to free‬‭its resources via the‬
‭wordsplit_free‬‭function.‬

‭●‬ ‭The‬‭fuzz_alpm_extract_keyid‬‭does not set proper handle‬‭or filename‬
‭arguments. Setting these arguments may leverage more code paths in the harness.‬

‭●‬ ‭The‬‭fuzz_parseconfigfile‬‭is far from ideal: the generated‬‭input may include‬
‭other files from the filesystem to be parsed by the code, which is nondeterministic.‬
‭The solution to that could be:‬

‭○‬ ‭Either use‬‭chroot‬‭or mount namespaces so that the‬‭fuzzer works in an‬
‭isolated filesystem with no other files included,‬

‭○‬ ‭Or changing the harness so it only generates semi-valid config files.‬
‭●‬ ‭We added an‬‭#ifndef FUZZING_PACMAN‬‭to remove the‬‭main‬‭function of Pacman‬

‭for the fuzzing harnesses which need the src/pacman code. Otherwise, the linking of‬
‭the harness would fail due to multiple definitions of the‬‭main‬‭symbol.‬

‭Recommendations and further work‬
‭Going further, we recommend the Pacman team to:‬

‭●‬ ‭Refactor the build system to better support the building of fuzzing harnesses‬
‭(instead of setting global arguments as we did).‬

‭●‬ ‭Extend the build system so it also builds all of the dependencies’ code with‬
‭sanitizers enabled.‬

‭●‬ ‭Test and fuzz the code with other sanitizers enabled that we haven't tried here (e.g.,‬
‭MemorySanitizer or ThreadSanitizer in case threads would ever be used in Pacman).‬

‭●‬ ‭Implementing more fuzzing harnesses, for example for the‬
‭dload_parseheader_cb‬‭function and other functionalities‬‭that parse untrusted‬
‭data.‬

‭●‬ ‭Fuzzing Pacman continuously with each release. This can be done by integrating it‬
‭into the‬‭oss-fuzz project‬‭, which allows for free fuzzing‬‭of open source projects.‬
‭However, please note that the company beyond the oss-fuzz project, Google, will‬
‭know about the found vulnerabilities first.‬

‭diff‬‭--git‬‭a/meson.build‬‭b/meson.build‬
‭index‬‭43705338.‬‭.bfeca3af‬‭100644‬
‭---‬‭a/meson.build‬
‭+++‬‭b/meson.build‬
‭@@‬‭-14‬‭,‬‭6‬‭+‬‭14‬‭,‬‭8‬‭@@‬‭libalpm_version‬‭=‬‭'‬‭13.0.1‬‭'‬

‭cc‬‭=‬‭meson.get_compiler(‬‭'c'‬‭)‬

‭+add_project_arguments(['-fsanitize=address',‬‭'-fno-omit-frame-pointer',‬‭'-ggdb',‬‭'-O0'],‬‭language‬‭:‬‭'c'‬‭)‬

‭Trail of Bits‬ ‭62‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/google/oss-fuzz

‭+‬
‭# commandline options‬
‭PREFIX‬‭=‬‭get_option('prefix')‬
‭DATAROOTDIR‬‭=‬‭join_paths(PREFIX,‬‭get_option('datarootdir'))‬
‭@@‬‭-305‬‭,‬‭6‬‭+‬‭307‬‭,‬‭8‬‭@@‬‭subdir('src/pacman')‬
‭subdir('src/util')‬
‭subdir('scripts')‬

‭+subdir('src/fuzzing')‬
‭+‬
‭# Internationalization‬
‭if‬‭get_option('i18n')‬

‭i18n‬‭=‬‭import‬‭('i18n')‬
‭@@‬‭-396‬‭,‬‭6‬‭+‬‭400‬‭,‬‭45‬‭@@‬‭executable(‬

‭install‬‭:‬‭true‬‭,‬
‭)‬

‭+#‬‭Note:‬‭fuzz‬‭targets‬‭below‬‭must‬‭be‬‭built‬‭with‬‭Clang‬‭compiler for the -fsanitize=fuzzer flag‬
‭+executable(‬
‭+‬ ‭'fuzz_wordsplit',‬
‭+‬ ‭fuzz_wordsplit_sources,‬
‭+‬ ‭include_directories‬‭:‬‭includes,‬
‭+‬ ‭link_with‬‭:‬‭[libcommon],‬
‭+‬ ‭dependencies‬‭:‬‭[],‬
‭+‬ ‭c_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer'],‬
‭+‬ ‭link_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer'],‬
‭+)‬
‭+‬
‭+executable(‬
‭+‬ ‭'fuzz_string_length',‬
‭+‬ ‭[fuzz_string_length_sources,‬‭pacman_sources],‬
‭+‬ ‭include_directories‬‭:‬‭includes,‬
‭+‬ ‭link_with‬‭:‬‭[libalpm_a,‬‭libcommon],‬
‭+‬ ‭dependencies‬‭:‬‭[],‬
‭+‬ ‭c_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer',‬‭'-DFUZZING_PACMAN'],‬
‭+‬ ‭link_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer'],‬
‭+)‬
‭+executable(‬
‭+‬ ‭'fuzz_alpm_extract_keyid',‬
‭+‬ ‭[fuzz_alpm_extract_keyid_sources,‬‭pacman_sources],‬
‭+‬ ‭include_directories‬‭:‬‭includes,‬
‭+‬ ‭link_with‬‭:‬‭[libalpm_a,‬‭libcommon],‬
‭+‬ ‭dependencies‬‭:‬‭[],‬
‭+‬ ‭c_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer',‬‭'-DFUZZING_PACMAN'],‬
‭+‬ ‭link_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer'],‬
‭+)‬
‭+executable(‬
‭+‬ ‭'fuzz_parseconfigfile',‬
‭+‬ ‭[fuzz_parseconfigfile_sources,‬‭pacman_sources],‬
‭+‬ ‭include_directories‬‭:‬‭includes,‬
‭+‬ ‭link_with‬‭:‬‭[libalpm_a],‬
‭+‬ ‭dependencies‬‭:‬‭[],‬
‭+‬ ‭c_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer',‬‭'-DFUZZING_PACMAN'],‬
‭+‬ ‭link_args‬‭:‬‭['-fsanitize=fuzzer,address',‬‭'-ggdb',‬‭'-O0',‬‭'-fno-omit-frame-pointer'],‬
‭+)‬
‭+‬
‭foreach‬‭wrapper‬‭:‬‭script_wrappers‬

‭cdata‬‭=‬‭configuration_data()‬
‭cdata.set_quoted('BASH',‬‭BASH.full_path())‬

‭diff‬‭--git‬‭a/src/fuzzing/fuzz_alpm_extract_keyid.c‬‭b/src/fuzzing/fuzz_alpm_extract_keyid.c‬
‭new‬‭file‬‭mode‬‭100644‬
‭index‬‭00000000.‬‭.febbd57a‬
‭---‬‭/dev/null‬
‭+++‬‭b/src/fuzzing/fuzz_alpm_extract_keyid.c‬
‭@@‬‭-0‬‭,‬‭0‬‭+‬‭1‬‭,‬‭26‬‭@@‬
‭+#define‬‭_XOPEN_SOURCE‬
‭+#include‬‭<stdio.h>‬
‭+#include‬‭<stdlib.h>‬

‭Trail of Bits‬ ‭63‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭+#include‬‭<stdint.h>‬
‭+#include‬‭<string.h>‬
‭+#include‬‭<wchar.h>‬
‭+‬
‭+‬‭/* libalpm */‬
‭+#include‬‭"alpm.h"‬
‭+#include‬‭"alpm_list.h"‬
‭+#include‬‭"handle.h"‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size);‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size)‬‭{‬
‭+‬ ‭if‬‭(Size‬‭==‬‭0‬‭)‬
‭+‬ ‭return‬‭0‬‭;‬
‭+‬
‭+‬ ‭alpm_handle_t‬‭handle;‬ ‭// TODO/FIXME?‬
‭+‬ ‭const‬‭char‬‭*‬‭filename‬‭=‬‭"/dev/null"‬‭;‬‭// TODO/FIXME?‬
‭+‬
‭+‬ ‭alpm_list_t‬‭*keys‬‭=‬‭NULL‬‭;‬
‭+‬ ‭alpm_extract_keyid(&handle,‬‭filename,‬‭/* sig‬‭*/‬‭Data,‬‭/* len */‬‭Size,‬‭&keys);‬
‭+‬
‭+‬ ‭return‬‭0‬‭;‬
‭+}‬
‭diff‬‭--git‬‭a/src/fuzzing/fuzz_parseconfigfile.c‬‭b/src/fuzzing/fuzz_parseconfigfile.c‬
‭new‬‭file‬‭mode‬‭100644‬
‭index‬‭00000000..4746141‬‭d‬
‭---‬‭/dev/null‬
‭+++‬‭b/src/fuzzing/fuzz_parseconfigfile.c‬
‭@@‬‭-0‬‭,‬‭0‬‭+‬‭1‬‭,‬‭43‬‭@@‬
‭+#include‬‭<stdio.h>‬
‭+#include‬‭<stdlib.h>‬
‭+#include‬‭<stdint.h>‬
‭+#define‬‭_GNU_SOURCE‬
‭+#include‬‭<sys/mman.h>‬
‭+#include‬‭<unistd.h>‬
‭+‬
‭+‬‭// TODO/FIXME: Fix the util.h include‬
‭+‬‭//#include "conf.h"‬
‭+‬‭// And remove that function header from here‬
‭+‬‭int‬‭parseconfigfile(‬‭const‬‭char‬‭*s);‬
‭+‬‭extern‬‭void‬‭*config;‬
‭+‬‭void‬‭*config_new(‬‭void‬‭);‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size);‬
‭+‬
‭+‬‭// TODO/FIXME: This fuzzer should always be run from‬‭a chroot‬
‭+‬‭// without any other files in it; otherwise the configfile‬‭may refer‬
‭+‬‭// to other files‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size)‬‭{‬
‭+‬ ‭static‬‭void‬‭*‬‭config_object‬‭=‬‭0‬‭;‬
‭+‬
‭+‬ ‭// TODO/FIXME: The harness needs to be run with‬‭-detect_leaks=0‬
‭+‬ ‭// because the config object here is detected‬‭as a leak‬
‭+‬ ‭if‬‭(!config_object)‬‭{‬
‭+‬ ‭config‬‭=‬‭config_object‬‭=‬‭config_new();‬
‭+‬ ‭}‬
‭+‬
‭+‬ ‭if‬‭(Size‬‭==‬‭0‬‭)‬
‭+‬ ‭return‬‭0‬‭;‬
‭+‬
‭+‬ ‭int‬‭fd‬‭=‬‭memfd_create(‬‭"input"‬‭,‬‭0‬‭);‬‭// create‬‭an in-memory file we can have path to‬
‭+‬ ‭write(fd,‬‭Data,‬‭Size);‬
‭+‬
‭+‬ ‭char‬‭path[‬‭64‬‭]‬‭=‬‭{‬‭0‬‭};‬
‭+‬ ‭sprintf(path,‬‭"/proc/self/fd/%d"‬‭,‬‭fd);‬
‭+‬
‭+‬ ‭parseconfigfile(path);‬
‭+‬

‭Trail of Bits‬ ‭64‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭+‬ ‭close(fd);‬
‭+‬
‭+‬ ‭return‬‭0‬‭;‬
‭+}‬
‭diff‬‭--git‬‭a/src/fuzzing/fuzz_string_length.c‬‭b/src/fuzzing/fuzz_string_length.c‬
‭new‬‭file‬‭mode‬‭100644‬
‭index‬‭00000000..8991‬‭b476‬
‭---‬‭/dev/null‬
‭+++‬‭b/src/fuzzing/fuzz_string_length.c‬
‭@@‬‭-0‬‭,‬‭0‬‭+‬‭1‬‭,‬‭26‬‭@@‬
‭+#include‬‭<stdio.h>‬
‭+#include‬‭<stdlib.h>‬
‭+#include‬‭<string.h>‬
‭+‬
‭+‬‭// TODO/FIXME: Fix the util.h include‬
‭+‬‭//#include "util.h"‬
‭+‬‭// And remove that function header from here‬
‭+‬‭size_t‬‭string_length(‬‭const‬‭char‬‭*s);‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size);‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size)‬‭{‬
‭+‬ ‭if‬‭(Size‬‭==‬‭0‬‭)‬
‭+‬ ‭return‬‭0‬‭;‬
‭+‬
‭+‬ ‭// Prepare a null terminated string‬
‭+‬ ‭char‬‭*‬‭cstring‬‭=‬‭malloc(Size+‬‭1‬‭);‬
‭+‬ ‭memcpy(cstring,‬‭Data,‬‭Size);‬
‭+‬ ‭cstring[Size]‬‭=‬‭0‬‭;‬
‭+‬
‭+‬ ‭string_length(cstring);‬
‭+‬
‭+‬ ‭free(cstring);‬
‭+‬
‭+‬ ‭return‬‭0‬‭;‬
‭+}‬
‭diff‬‭--git‬‭a/src/fuzzing/fuzz_wordsplit.c‬‭b/src/fuzzing/fuzz_wordsplit.c‬
‭new‬‭file‬‭mode‬‭100644‬
‭index‬‭00000000.‬‭.e2e10210‬
‭---‬‭/dev/null‬
‭+++‬‭b/src/fuzzing/fuzz_wordsplit.c‬
‭@@‬‭-0‬‭,‬‭0‬‭+‬‭1‬‭,‬‭36‬‭@@‬
‭+#define‬‭_XOPEN_SOURCE‬
‭+#include‬‭<stdio.h>‬
‭+#include‬‭<stdlib.h>‬
‭+#include‬‭<stdint.h>‬
‭+‬
‭+#include‬‭"util-common.h"‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size);‬
‭+‬
‭+‬‭int‬‭LLVMFuzzerTestOneInput(‬‭const‬‭uint8_t‬‭*Data,‬‭size_t‬‭Size)‬‭{‬
‭+‬ ‭if‬‭(Size‬‭==‬‭0‬‭)‬
‭+‬ ‭return‬‭0‬‭;‬
‭+‬
‭+‬ ‭// Prepare a null terminated string‬
‭+‬ ‭char‬‭*‬‭cstring‬‭=‬‭malloc(Size+‬‭1‬‭);‬
‭+‬ ‭memcpy(cstring,‬‭Data,‬‭Size);‬
‭+‬ ‭cstring[Size]‬‭=‬‭0‬‭;‬
‭+‬
‭+‬ ‭char‬‭**‬‭ptr‬‭=‬‭wordsplit(cstring);‬
‭+‬
‭+‬ ‭// Free the memory allocated by wordsplit‬
‭+‬ ‭if‬‭(ptr)‬‭{‬
‭+‬ ‭int‬‭i‬‭=‬‭0‬‭;‬
‭+‬ ‭char‬‭*‬‭p‬‭=‬‭ptr[i++];‬
‭+‬ ‭while‬‭(p)‬‭{‬
‭+‬ ‭free(p);‬

‭Trail of Bits‬ ‭65‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭+‬ ‭p‬‭=‬‭ptr[i++];‬
‭+‬ ‭}‬
‭+‬ ‭free(ptr);‬
‭+‬ ‭}‬
‭+‬
‭+‬ ‭// Free the allocated cstring‬
‭+‬ ‭free(cstring);‬
‭+‬
‭+‬ ‭return‬‭0‬‭;‬
‭+}‬
‭diff‬‭--git‬‭a/src/fuzzing/meson.build‬‭b/src/fuzzing/meson.build‬
‭new‬‭file‬‭mode‬‭100644‬
‭index‬‭00000000..9‬‭a8555c2‬
‭---‬‭/dev/null‬
‭+++‬‭b/src/fuzzing/meson.build‬
‭@@‬‭-0‬‭,‬‭0‬‭+‬‭1‬‭,‬‭15‬‭@@‬
‭+fuzz_wordsplit_sources‬‭=‬‭files('''‬
‭+‬ ‭fuzz_wordsplit.c‬
‭+'''.split())‬
‭+‬
‭+fuzz_string_length_sources‬‭=‬‭files('''‬
‭+‬ ‭fuzz_string_length.c‬
‭+'''.split())‬
‭+‬
‭+fuzz_alpm_extract_keyid_sources‬‭=‬‭files('''‬
‭+‬ ‭fuzz_alpm_extract_keyid.c‬
‭+'''.split())‬
‭+‬
‭+fuzz_parseconfigfile_sources‬‭=‬‭files('''‬
‭+‬ ‭fuzz_parseconfigfile.c‬
‭+'''.split())‬
‭\‬‭No‬‭newline‬‭at‬‭end‬‭of‬‭file‬
‭diff‬‭--git‬‭a/src/pacman/pacman.c‬‭b/src/pacman/pacman.c‬
‭index‬‭e5c6e420.‬‭.77‬‭c88392‬‭100644‬
‭---‬‭a/src/pacman/pacman.c‬
‭+++‬‭b/src/pacman/pacman.c‬
‭@@‬‭-1079‬‭,‬‭6‬‭+‬‭1079‬‭,‬‭7‬‭@@‬‭static‬‭void‬‭cl_to_log(‬‭int‬‭argc,‬‭char‬‭*argv[])‬

‭}‬
‭}‬

‭+#ifndef‬‭FUZZING_PACMAN‬
‭/** Main function.‬
‭* @param argc‬
‭* @param argv‬

‭@@ -1273,3 +1274,4 @@ int main(int argc, char *argv[])‬
‭/* not reached */‬
‭return‬‭EXIT_SUCCESS;‬

‭}‬
‭+#endif‬‭//FUZZING_PACMAN‬
‭diff‬‭--git‬‭a/src/pacman/util.c‬‭b/src/pacman/util.c‬
‭index‬‭5‬‭d42a6e9..a41c9e5e‬‭100644‬
‭---‬‭a/src/pacman/util.c‬
‭+++‬‭b/src/pacman/util.c‬
‭@@‬‭-449‬‭,‬‭7‬‭+‬‭449‬‭,‬‭7‬‭@@‬‭static‬‭char‬‭*concat_list(alpm_list_t‬‭*lst,‬‭formatfn‬‭fn)‬

‭return‬‭output;‬
‭}‬

‭-‬‭static‬‭size_t‬‭string_length(‬‭const‬‭char‬‭*s)‬
‭+‬‭size_t‬‭string_length(‬‭const‬‭char‬‭*s)‬
‭{‬

‭int‬‭len;‬
‭wchar_t‬‭*wcstr;‬

‭diff‬‭--git‬‭a/src/pacman/util.h‬‭b/src/pacman/util.h‬
‭index‬‭52e79915‬‭..d8f7f5f2‬‭100644‬
‭---‬‭a/src/pacman/util.h‬
‭+++‬‭b/src/pacman/util.h‬
‭@@‬‭-47‬‭,‬‭6‬‭+‬‭47‬‭,‬‭7‬‭@@‬‭typedef‬‭struct‬‭_pm_target_t‬‭{‬

‭int‬‭is_explicit;‬

‭Trail of Bits‬ ‭66‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭}‬‭pm_target_t;‬

‭+‬‭size_t‬‭string_length(‬‭const‬‭char‬‭*s);‬
‭void‬‭trans_init_error‬‭(‬‭void‬‭);‬
‭/* flags is a bitfield of alpm_transflag_t flags‬‭*/‬
‭int‬‭trans_init‬‭(‬‭int‬‭flags,‬‭int‬‭check_valid);‬

‭Figure D.1: The diff for the fuzzing harness code‬

‭Trail of Bits‬ ‭67‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭E. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭From March 4 to Month 6, 2024, Trail of Bits reviewed the fixes and mitigations‬
‭implemented by the Arch Linux team for the issues identified in this report. We reviewed‬
‭each fix to determine its effectiveness in resolving the associated issue.‬

‭In summary, of the 9 issues described in this report, Arch Linux has resolved 7 issues, and‬
‭has partially resolved 2 issues. For additional information, please see the Detailed Fix‬
‭Review Results below.‬

‭ID‬ ‭Title‬ ‭Status‬

‭1‬ ‭Use-after-free vulnerability in the print_packages function‬ ‭Resolved‬

‭2‬ ‭Null pointer dereferences‬ ‭Resolved‬

‭3‬ ‭Allocation failures can lead to memory leaks or null pointer‬
‭dereferences‬

‭Resolved‬

‭4‬ ‭Buffer overflow read in string_length utility function‬ ‭Resolved‬

‭5‬ ‭Undefined behavior or potential null pointer dereferences by passing‬
‭null pointers to functions requiring non-null arguments‬

‭Partially‬
‭Resolved‬

‭6‬ ‭Undefined behavior from use of atoi‬ ‭Resolved‬

‭7‬ ‭Database parsers fail silently if an option is not recognized‬ ‭Resolved‬

‭8‬ ‭Cache cleaning function may delete the wrong files‬ ‭Partially‬
‭Resolved‬

‭9‬ ‭Integer underflow in a length check leading to out-of-bounds read in‬
‭alpm_extract_keyid‬

‭Resolved‬

‭Trail of Bits‬ ‭68‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

‭Detailed Fix Review Results‬
‭TOB-PACMAN-1: Use-after-free vulnerability in the print_packages function‬
‭Resolved in‬‭commit‬‭36fcff6e‬‭. This commit adds an assignment‬‭which overwrites the‬
‭freed‬‭temp‬‭variable with the newly allocated‬‭string‬‭variable.‬

‭TOB-PACMAN-2: Null pointer dereferences‬
‭Resolved in‬‭commit 74deada5‬‭. This commit adds the‬‭necessary checks to determine‬
‭whether or not the‬‭pkgname‬‭variable is null before‬‭using it.‬

‭The Pacman developers correctly identified that the‬‭write_to_child‬‭function can only‬
‭ever be called with a non-null callback, so a fix for that portion of the issue was not‬
‭necessary.‬

‭TOB-PACMAN-3: Allocation failures can lead to memory leaks or null pointer‬
‭dereferences‬
‭Resolved in commits‬‭6711d10f‬‭and‬‭abc6dd74‬‭. Commit‬‭6711d10f adds a check to the‬
‭setdefaults‬‭function which ensures that the pointer‬‭returned‬‭strdup‬‭is non-null before‬
‭using it. Commit abc6dd74 adds a check to the‬‭alpm_list_cmp_unsorted‬‭function which‬
‭ensures that the pointer returned by‬‭calloc‬‭is non-null‬‭before using it.‬

‭The Pacman developers identified the code in figure 3.3 as not being an issue. We have‬
‭confirmed that this is the case: it should not be possible for the‬‭line‬‭variable to be null‬
‭without the‬‭goto error‬‭statement being executed; this‬‭prevents‬‭pkg->filename‬‭from‬
‭being null in the call to the‬‭_alpm_validate_filename‬‭function.‬

‭TOB-PACMAN-4: Buffer overflow read in string_length utility function‬
‭Resolved in‬‭commit c9c56be3‬‭. This commit changes the‬‭string_length‬‭function so that it‬
‭loops under more strict conditions: it stops once it reaches a character that isn’t a digit or a‬
‭semicolon, rather reading until an ‘m’ is found.‬

‭TOB-PACMAN-5: Undefined behavior or potential null pointer dereferences by‬
‭passing null pointers to functions requiring non-null arguments‬
‭Partially resolved in commits‬‭f996f301‬‭and‬‭ce528a26‬‭.‬‭Commit f996f301 adds a check to the‬
‭shift_pacsave‬‭function which ensures that the‬‭dir‬‭pointer is non-null before using it in‬
‭a‬‭closedir(dir)‬‭call. Commit ce528a26 adds a check‬‭to the‬‭mount_point_list‬
‭function which ensures that the‬‭mnt->mnt_dir‬‭value‬‭is non-null before attempting to‬
‭duplicate it into‬‭mp->mount_dir‬‭using the‬‭STRDUP‬‭macro.‬‭This ensures that‬
‭mp->mount_dir‬‭will be non-null as well, which prevents‬‭undefined behavior during the call‬
‭to‬‭strlen(mp->mount_dir)‬‭.‬

‭The instances of undefined behavior shown in figure 5.3 have not been resolved.‬

‭Trail of Bits‬ ‭69‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/commit/36fcff6e13ac65797936faf716e4295eaf52ad48
https://gitlab.archlinux.org/pacman/pacman/-/commit/74deada511358a4ce9c10ee0c6ae216e2c6c6b73#
https://gitlab.archlinux.org/pacman/pacman/-/commit/6711d10f96e0862f7b0b086d3a35358787b6d552#
https://gitlab.archlinux.org/pacman/pacman/-/commit/abc6dd7411c57cad0805b3cf51271847d9d0679e#
https://gitlab.archlinux.org/pacman/pacman/-/commit/c9c56be3960c7ba7ccacc7ccc992965f16b9eba0
https://gitlab.archlinux.org/pacman/pacman/-/commit/f996f301631625d7b98b60ebd1b6dad1f3a11a74#
https://gitlab.archlinux.org/pacman/pacman/-/commit/ce528a26549f9456d5126f40347af44e69f448c1#

‭TOB-PACMAN-6: Undefined behavior from use of atoi‬
‭Resolved in‬‭commit 6e6d3f18‬‭and‬‭PR 136‬‭. Commit 6e6d3f18‬‭replaces the use of‬‭atoi‬‭in‬
‭the‬‭_alpm_local_db_pkgpath‬‭function with a set of‬‭strcmp‬‭comparisons. PR 136‬
‭replaces the uses of‬‭atoi‬‭in the‬‭parsearg_global‬‭function‬‭with calls to‬‭strtol‬‭,‬
‭performing all the necessary error checks.‬

‭TOB-PACMAN-7: Database parsers fail silently if an option is not recognized‬
‭Resolved in‬‭commit e1dc6099‬‭. This commit adds a warning‬‭message which is logged in the‬
‭case of an unknown option.‬

‭TOB-PACMAN-8: Cache cleaning function may delete the wrong files‬
‭Partially resolved in‬‭commit a6b25247‬‭. This commit‬‭adds a check determining whether‬‭len‬
‭> PATH_MAX‬‭, and skipping the current file if this‬‭is the case. However, the check should‬
‭instead determine whether‬‭len‬‭>=‬‭PATH_MAX‬‭, since the‬‭value returned by the‬‭snprintf‬
‭function does not count the trailing null character.‬

‭In addition, the commit also fixes a very similar issue in the‬‭sync_cleandb‬‭function which‬
‭was not found during the audit. However, the fix for the‬‭sync_cleandb‬‭function only‬
‭prints an error message in the case of a problem, but does not skip the current file. In‬
‭addition, the fix has the same issue mentioned above of using the‬‭>‬‭operator rather than‬
‭the‬‭>=‬‭operator.‬

‭TOB-PACMAN-9: Integer underflow in a length check leading to out-of-bounds read in‬
‭alpm_extract_keyid‬
‭Resolved in‬‭commit 16a2a797‬‭. This commit adds an additional‬‭check for‬‭position >‬
‭length‬‭before computing‬‭length - position‬‭. If‬‭position‬‭is greater than‬‭length‬‭, an‬
‭error is returned.‬

‭Trail of Bits‬ ‭70‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

https://gitlab.archlinux.org/pacman/pacman/-/commit/6e6d3f18e3a8d4cd4376c0922fdcaad354d35359
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/136
https://gitlab.archlinux.org/pacman/pacman/-/commit/e1dc609939cc5025213a51b76cf7c74b12eeab54
https://gitlab.archlinux.org/pacman/pacman/-/commit/a6b2524762eb3c024f5e6f58253f6f811e3d2dd3
https://gitlab.archlinux.org/pacman/pacman/-/commit/16a2a79728d6b3184fd36156b79b3c91d73b9292

‭F. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭71‬ ‭Pacman Security Assessment‬
‭CONFIDENTIAL‬

