
 Pacman
 Security Assessment and Lightweight Threat Model

 March 7, 2024

 Prepared for:

 Levente Polyak
 Organized by the Open Technology Fund

 Prepared by: Spencer Michaels, David Pokora, Sam Alws, and Dominik Czarnota

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Pacman Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be business confidential information; it is
 licensed to the Open Technology Foundation under the terms of the project statement of
 work and intended solely for internal use by the Open Technology Foundation. Material
 within this report may not be reproduced or distributed in part or in whole without the
 express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Pacman Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 5
 Executive Summary 6
 Project Goals 9
 Project Targets 10
 Project Coverage 11
 Threat Model 12

 Data Types 12
 Data Flow 12
 Components and Trust Zones 14
 Trust Zone Connections 17
 Threat Actors 19
 Threat Scenarios 21
 Recommendations 25

 Automated Testing 28
 Codebase Maturity Evaluation 30
 Summary of Findings 32
 Detailed Findings 33

 1. Use-after-free vulnerability in the print_packages function 33
 2. Null pointer dereferences 36
 3. Allocation failures can lead to memory leaks or null pointer dereferences 38
 4. Buffer overflow read in string_length utility function 41
 5. Undefined behavior or potential null pointer dereferences by passing null pointers to
 functions requiring non-null arguments 44
 6. Undefined behavior from use of atoi 46
 7. Database parsers fail silently if an option is not recognized 48
 8. Cache cleaning function may delete the wrong files 49
 9. Integer underflow in a length check leading to out-of-bounds read in
 alpm_extract_keyid 50

 A. Vulnerability Categories 52
 B. Code Maturity Categories 54
 C. Code Quality Findings 56
 D. Fuzzing Pacman code 61

 Fuzzing harness notes 61

 Trail of Bits 3 Pacman Security Assessment
 CONFIDENTIAL

 Recommendations and further work 62
 E. Fix Review Results 68

 Detailed Fix Review Results 69
 F. Fix Review Status Categories 71

 Trail of Bits 4 Pacman Security Assessment
 CONFIDENTIAL

 Project Summary

 Contact Information
 The following project managers were associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering directors were associated with this project:

 Anders Helsing , Engineering Director, Application Security
 anders.helsing@trailofbits.com

 The following consultants were associated with this project:

 Spencer Michaels , Consultant David Pokora , Consultant
 spencer.michaels@trailofbits.com david.pokora@trailofbits.com

 Dominik Czarnota , Consultant Sam Alws , Consultant
 dominik.czarnota@trailofbits.com sam.alws@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 November 13, 2023 Pre-project kickoff call

 November 14, 2023 Discovery meeting #1

 November 15, 2023 Discovery meeting #2

 November 16, 2023 Discovery meeting #3

 December 5, 2023 Delivery of report draft, threat model readout meeting

 December 6, 2023 Code review readout meeting

 March 7, 2024 Delivery of fix review appendix

 Trail of Bits 5 Pacman Security Assessment
 CONFIDENTIAL

 Executive Summary

 Engagement Overview
 The Open Technology Foundation engaged Trail of Bits to review the security of the
 Pacman package manager, as well as its closely-associated package management library
 libalpm . Pacman is the official package manager of Arch Linux and is developed by the
 Arch team; it is also used in a handful of other Linux distributions, including Manjaro.

 A team of two consultants conducted a threat model from November 13th to 17th, for a
 total of two engineer weeks; this was followed by a code review by three engineers from
 November 20th to December 1st, for a total of five engineer-weeks of effort. Our testing
 efforts focused on package signature verification, data integrity during downloads and
 upgrades, memory safety, and a new user-based isolation mechanism. With full access to
 source code and documentation, we performed static and dynamic testing of Pacman and
 libalpm , including fuzzing, using automated and manual processes. The audit scope
 excluded the parts of the Pacman ecosystem used exclusively for building packages, such
 as makepkg .

 Observations and Impact
 Overall, Pacman is well-designed, comprehensively-documented, and robust against
 common application security issues. The code review portion of the engagement revealed
 several issues ranging from low to undetermined severity, and while the threat model
 revealed some plausible threat scenarios, these generally require the confluence of several
 independent factors which set a relatively high bar for an attacker to achieve, such as
 compromising a mirror, obtaining a signing key, intercepting a user’s connection under
 certain configurations, and so on.

 That said, certain defense-in-depth measures can be implemented to improve the
 resilience of Pacman and the Arch Linux distribution and signing infrastructure, even
 against cases where an attacker already has a partial foothold. Based on the threat model
 and code review results, three major areas of improvement stand out:

 ● As Pacman is written in C, even security-conscious developers run a relatively high
 risk of accidentally introducing memory safety issues — we discovered several
 during the audit, although ultimately none proved especially serious
 (TOB-PACMAN-1 , TOB-PACMAN-4 , TOB-PACMAN-9). We recommend employing the
 use of static and dynamic analyses, including fuzz tests, to uncover additional
 potential cases of memory corruption and leaks before attackers do.

 ● Pacman’s signing infrastructure is robust against maintenance issues such as keys
 being lost (not stolen), signers becoming inactive or incapacitated, and so on.
 However, due to a lack of documented incident response procedures, the Arch
 Linux team may be ill-equipped to promptly respond to a security incident involving

 Trail of Bits 6 Pacman Security Assessment
 CONFIDENTIAL

 theft or malicious use of key materials. Additionally, a lack of clear auditing
 guidelines and trust requirements for signers increases the likelihood that package
 signing keys could be used maliciously. As Arch Linux continues to grow as an
 organization, it is critical that security-related processes, guidelines, and
 requirements are clearly and precisely documented to ensure consistency and
 prompt response to security incidents.

 ● Pacman can verify database signatures, but Arch Linux’s official databases are not
 signed and Pacman does not require databases to be signed by default. Combined
 with the fact that Pacman allows the use of plaintext HTTP package mirrors, users
 with such a configuration could be served malicious database files, which could
 serve old and vulnerable versions of packages. This issue is known to the Arch Linux
 team, and work is currently underway to rectify it.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the Arch Linux team take the following steps:

 ● Remediate the code review findings disclosed in this report. These findings
 should be addressed as part of a direct remediation or as part of any refactor that
 may occur when addressing other recommendations.

 ● Create a long-term plan for implementing the strategic recommendations in
 the Threat Model section of this report. These findings should be addressed as
 part of a direct remediation or as part of any refactor that may occur when
 addressing other recommendations.

 ● Clarify the intended use and safety guarantees of the --root argument. This
 argument specifies which directory should be used by Pacman as the root directory.
 However, it is not guaranteed that files and directories outside of the root directory
 will remain untouched (for example, if there is a maliciously placed symlink inside of
 the root directory). Pacman’s manpage entry states that the argument should not be
 used as “a way to install software into /usr/local instead of /usr ” or “for
 performing operations on a mounted guest system”. However, Pacman
 documentation does not state what this argument should be used for, and does not
 give any information about the argument’s (lack of) safety guarantees.

 ● Implement security-focused static analysis, dynamic analysis, and fuzz tests.
 These should be run against each new Pacman version prior to release to minimize
 the likelihood that ongoing code changes introduce memory corruption issues.

 Trail of Bits 7 Pacman Security Assessment
 CONFIDENTIAL

 Finding Severities and Categories

 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 0

 Low 1

 Informational 5

 Undetermined 3

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 5

 Denial of Service 1

 Undefined Behavior 3

 Trail of Bits 8 Pacman Security Assessment
 CONFIDENTIAL

 Project Goals

 The engagement was scoped to provide a security assessment of the Pacman package
 manager. Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Is there any way to bypass Pacman’s package signature validation?

 ● Is it possible to break out of the SandboxUser’s filesystem context implemented in
 MR 23 ?

 ● Does the package consistency checking included in MR 96 have any security issues?

 ● Is Pacman vulnerable to any form of memory corruption?

 ● Can an attacker with control over database contents (which are unsigned by default
 and may be accessed over plaintext HTTP) cause Pacman to exhibit malicious
 behavior?

 ○ In particular, can a malicious database silently downgrade a package to a
 known-vulnerable version, install a vulnerable package, or uninstall a
 package providing security measures?

 ● Can a malformed package, or malformed metadata, cause Pacman to bring the
 system into an inconsistent state?

 ● Are Pacman’s defaults conducive to secure operation by ordinary users?

 ● Does Pacman call out to third-party programs or libraries in unsafe ways?

 ● Does Pacman’s current test suite appropriately cover security related concerns?

 ● Is Arch Linux’s package signing infrastructure robust against failures and resilient to
 compromise, including malicious insiders?

 ● Are Arch Linux’s official package repositories reasonably well protected against the
 unexpected introduction of malicious code or metadata?

 Trail of Bits 9 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

 Project Targets

 The engagement involved a review and testing of the target listed below, including two
 as-yet-unmerged pull requests.

 Pacman
 Repository https://gitlab.archlinux.org/pacman/pacman/

 Version 18e49f2c97f0e33a645f364ed9de8e3da6c36d41

 Type C binary application

 Platform Linux

 Merge Request 23: Add SandboxUserConfiguration
 URL https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23

 Merge Request 96: Check package consistency when installing
 URL https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

 Trail of Bits 10 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● A lightweight threat model of Pacman and the portion of its infrastructure related to
 package signing and distribution.

 ● Non-exhaustive manual review of the Pacman codebase as well as two
 security-relevant pull requests pending acceptance, with a focus on code paths
 pertaining to security-critical functionality highlighted in the initial threat model

 ● Static analysis of the Pacman codebase and manual triage of results

 ● Dynamic analysis to identify instances of memory corruption and leaks

 ● Fuzzing to identify inputs that could cause unexpected behavior at runtime

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● Code of various dependencies used by Pacman like libarchive, gpgme etc.

 ● Although we included signing/packaging infrastructure security controls in the
 threat model, we did not have access to review their implementation during the
 code review.

 Trail of Bits 11 Pacman Security Assessment
 CONFIDENTIAL

 Threat Model

 As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from
 Mozilla’s “Rapid Risk Assessment" methodology and the National Institute of Standards and
 Technology’s (NIST) guidance on data-centric threat modeling (NIST 800-154). The results of
 the lightweight threat model are noted in the subsections below.

 Data Types
 The target application makes use of the following data formats:

 ● Tar files (.tar), usually compressed (.zst, .gz, or .xz): Pacman package files
 ● Bash scripts: PKGBUILD, INSTALL files
 ● INI configuration files: hooks, configuration files (e.g. pacman.conf)
 ● Plain text: PKGINFO, BUILDINFO, database and file-list files
 ● PGP keys

 Data Flow
 Pacman is the default package manager for Arch Linux, maintained officially by the Arch
 Linux development team.

 Pacman retrieves packages from one or more repositories , which can either be located on
 the local host’s filesystem, or accessed over the network via any protocol supported by
 libcurl, which Pacman uses internally. Packages can also be directly installed from the
 filesystem without being associated with a repository.

 In a typical use case, users download the vast majority of their packages pre-built from
 HTTP or HTTPS mirrors of the remote Arch Linux official repositories. A small number of
 unofficial packages, such as those from the Arch User Repository, may be built and
 installed either directly as a manually-built package file on the local filesystem, or from a
 repository hosted on the local filesystem.

 When a package is installed, Pacman verifies its signature using an internal Pacman Keyring ,
 with root-of-trust derived from a unique System Master Key which is generated upon system
 installation, and used to sign the set of Main Signing Keys imported into the system-local
 Pacman keyring. These Main Signing Keys , of which there are only a small number, are used
 by the Arch Linux developers to sign Packaging Keys , with which package maintainers sign
 their packages. Each main signing key has an associated Revocation Key , held in the
 possession of a different trusted signer, which can be used to revoke it in the event of a
 compromise. Those keys, along with the names of developers they belong to, are listed on
 the https://archlinux.org/master-keys/ website.

 Data for keys stored in Pacman’s internal keyring is kept-up-to-date via the WKD Sync
 Service , which runs weekly on Arch Linux and syncs with a distributed Web Key Directory . The

 Trail of Bits 12 Pacman Security Assessment
 CONFIDENTIAL

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://archlinux.org/master-keys/

 sync service can only update metadata (such as expiration dates) for existing stored keys; it
 cannot alter whether or not a given key is trusted.

 Maintainers generally use makepkg to generate pacman packages from application/library
 sources. The build scripts for Arch Linux’s official packages are hosted on a dedicated
 GitLab account, https://gitlab.archlinux.org/ , with login handled by an Arch-managed
 Keycloak SSO instance. Most official packages are built on a single, high-capacity Main Build
 Server administered by dedicated DevOps members of the Arch Linux team and accessible
 via SSH; however, individual maintainers may build and sign packages on other machines.
 Packagers are currently strongly encouraged, although not strictly required, to retain
 signing keys only on hardware keys (as opposed to on their local filesystem).

 All official Arch Linux packages are currently signed, and by default, Pacman requires
 packages from remote repositories to have a valid signature trusted by Arch’s main signing
 keys. Package installation transactions may be preceded and/or followed by hooks , which
 can invoke arbitrary commands in response to the presence of specific packages in a
 transaction. Packages, along with detached signatures, are cached in a Package Cache
 directory (/var/cache/pacman/pkg) on the local filesystem after installation.

 Below, we depict known connections between system components of the
 package-consumption side of Pacman, as integrated in Arch Linux. These diagrams are
 intended to convey our understanding of the system as a whole. Further details will be
 discussed in the Components and Trust Zones and Trust Zone Connections report
 subsections. The dotted lines indicate trust boundaries separating zones.

 Trail of Bits 13 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/

 Figure 1: The data flow of packages and their signing data from Arch Linux’s root-of-trust to the
 host machine on which Pacman runs.

 Components and Trust Zones
 The following table describes the components that make up the Pacman package
 management system, as well as the external dependencies on which they rely. These
 system elements are further classified into trust zones —logical clusters of shared
 functionality and criticality, between which the system enforces (or should enforce)
 interstitial controls and access policies.

 Components marked by asterisks (*) are considered out of scope for the assessment. We
 explored the implications of threats involving out-of-scope components that directly affect
 in-scope components, but we did not consider threats to out-of-scope components
 themselves.

 Component Description

 Host Machine The host on which Pacman is used to manage packages.

 Pacman Package
 Manager

 Pacman is a package management tool that tracks installed packages on a
 Linux system, including support for dependency resolution/retrieval,
 package groups, install/uninstall scripts, and pre/post-install hooks. It also

 Trail of Bits 14 Pacman Security Assessment
 CONFIDENTIAL

 contains utilities such as makepkg, used to create packages which can be
 installed by Pacman.

 Local Filesystem
 Repository

 A repository residing on the local filesystem. Repositories provide a listing
 of packages which can be fetched, installed, or upgraded. The package
 listing is managed by the repository maintainer(s). Packages can be signed
 or unsigned.

 Package Cache A directory populated with previously-installed packages. Cached packages
 are used to rapidly reinstall a previously installed package. Any signatures
 contained within packages are also stored alongside and validated for each
 cached package item.

 Pacman Keyring A keyring containing signing keys for all packages installed on the system.
 Keys within the keyring are only considered trusted if they are signed by an
 Arch Linux packaging key (which is in turn signed by a main signing key).

 System Master
 Key

 The root of trust for Pacman’s signature validation on any given installation.
 Master keys are generated at first Pacman run (and so on first boot of Arch
 Linux), are unique to each Arch Linux install, and are used by the host
 machine to trust the Arch Linux main signing keys.

 WKD Sync
 Service

 A GPG wrapper service on Arch Linux that runs weekly to sync updates (e.g.
 expiry extensions) to keys in the Pacman keyring, pulled from a Web Key
 Directory (WKD). The WKD service can add previously-unknown signatures
 to the keyring, but cannot make Pacman trust those signatures.

 Hooks Pre- and post-install hooks which enable running commands just before or
 after a Pacman transaction (e.g., to rebuild a new kernel image after
 Pacman installs a new kernel version).

 Local Network The components which share a local network with the Host Machine.

 Local Network
 Repository

 A repository residing. Repositories provide a listing of packages which can
 be fetched, installed, or upgraded. The package listing is managed by the
 repository maintainer(s). Packages can be signed or unsigned.

 Remote Network The components which live outside of the Local Network trust zone, e.g.
 public-facing external network components.

 Remote Network
 Repository

 A repository residing on a remote network host. Repositories provide a
 listing of packages which can be fetched, installed, or upgraded. The

 Trail of Bits 15 Pacman Security Assessment
 CONFIDENTIAL

 package listing is managed by the repository maintainer(s). Packages can be
 signed or unsigned.

 Web Key
 Directory (WKD)

 GnuPG’s standard system for key discovery, which maps public keys to
 email addresses.

 Arch Linux
 GitLab (*)

 The GitLab account hosting the source code for official Pacman packages.

 Packaging
 Infrastructure

 The machines (and their operators) that build and sign Pacman packages.

 Main Build
 Server (*)

 The dedicated, high-capacity machine that the Arch Linux team uses to
 build the majority of its official packages.

 Packager Host A host operated by a Packager, used to build and sign packages.

 Packaging Keys A key used by package maintainers to sign packages. Each trusted
 maintainer is issued a packaging key signed by a quorum of main signing
 keys.

 Makepkg (*) The toolset used to build Pacman packages.

 Packaging
 Root-of-Trust

 The components which are used to facilitate administration of an operating
 system’s primary mirrors and managing their authorized package signers.

 Main Signing
 Keys

 The root of trust for Arch Linux’s signing infrastructure, which can sign new
 packaging keys as well as packages themselves. Currently, only five main
 signing keys exist.

 Revocation Keys Each Main Signing Key has a single associated Revocation Key used to
 revoke the signing key in the event of compromise. Each signing key’s
 Revocation Key is held by another signing key owner.

 Arch Linux
 DevOps

 The individuals who administer Arch Linux’s Keycloak SSO instance, GitLab
 account, etc.

 Trail of Bits 16 Pacman Security Assessment
 CONFIDENTIAL

 Trust Zone Connections
 At a design level, trust zones are delineated by the security controls that enforce the
 differing levels of trust within each zone. Therefore, it is necessary to ensure that data
 cannot move between trust zones without first satisfying the intended trust requirements
 of its destination. We enumerate such connections between trust zones below.

 Originating
 Zone

 Destination
 Zone

 Data Description Connection
 Type

 Auth Type

 Host Machine Host Machine All operations
 performed by pacman
 which leverage
 components in the
 same zone, largely rely
 on cryptographic
 verification (e.g. signed
 packages, packager key
 authorization).

 The artifacts written by
 pacman are done so in
 root-user execution
 context, with file
 permissions blocking

 Filesystem File
 Privileges,

 GNUpg
 signature
 validation

 Remote
 Network

 Host Machine The host’s WKD Sync
 Service pulls updated
 key information from a
 Web Key Directory into
 the Pacman Keyring.

 HTTPS None

 Remote
 Network,
 Local Network

 Host Machine The host installs a
 package from a Local or
 Remote Network
 Repository.

 libcurl
 supported
 protocols (e.g.
 HTTP, HTTPS,
 FTP, …)

 GNUpg
 signature
 validation,

 libcurl
 supported
 protocols
 (e.g. TLS)

 Remote
 Network

 Local
 Network

 Third-party package
 sources pulled from the
 Internet are

 Varies; likely
 HTTP/S

 Varies or
 None

 Trail of Bits 17 Pacman Security Assessment
 CONFIDENTIAL

 downloaded to, and
 built on, the local
 network; the resulting
 packages are placed in
 a Local Network
 Repository.

 Remote
 Network

 Packaging
 Infrastructure

 Package sources hosted
 on the Arch Linux
 GitLab are downloaded
 to, and built on, the
 Main Build Server or a
 Packager Host.

 HTTPS SSH

 Packaging
 Root-of-Trust

 Packaging
 Infrastructure

 A quorum of Main
 Signing Key holders
 signs a new Packaging
 Key, or issues
 revocations for an
 existing one.

 N/A GNUpg
 signature
 verification

 Packaging
 Root-of-Trust

 Arch Linux
 GitLab

 An Arch Linux
 administrator logs into
 GitLab through
 Keycloak SSO.

 HTTPS OAuth

 Trail of Bits 18 Pacman Security Assessment
 CONFIDENTIAL

 Threat Actors
 When conducting a threat model, we define the types of actors that could threaten the
 security of the system. We also define other users of the system who may be impacted by,
 or induced to undertake, an attack. For example, in a confused deputy attack such as
 cross-site request forgery, a normal user who is induced by a third party to take a malicious
 action against the system would be both the victim and the direct attacker. Establishing the
 types of actors that could threaten the system is useful in determining which protections, if
 any, are necessary to mitigate or remediate vulnerabilities. We will refer to these actors in
 descriptions of the security findings that we uncovered through the threat modeling
 exercise.

 Actor Description

 End Users Actors representing users of Pacman and consumers of its
 packages and repositories. They operate in the Host Machine zone,
 and may have influence over the Local Network zone and its
 repositories.

 Local User A low-privileged user on the Host Machine, e.g. non-admin,
 non-root. They cannot execute sensitive pacman operations, as
 they require root-access.

 Local Root The root user on the Host Machine, with privileges to perform any
 operations they desire. Pacman requires a Local User to elevate to
 Local Root to install or update packages.

 Operators Privileged actors with the responsibility of operating Packaging
 Infrastructure and Packaging Root-of-Trust components.

 Repository
 Administrator

 An individual with control over a Pacman repository/mirror. They
 may operate a local machine, local network, or remote repository.

 DevOps Administrator An individual with control over Arch Linux’s DevOps infrastructure,
 including the Arch Linux GitLab account and Keycloak SSO instance.

 Packager An individual in possession of a Packaging Key which was signed
 and approved by a Trusted Signer

 Trusted Signer An individual in possession of a Master Signing Key, a single keypair
 used in a threshold signature scheme (TSS) which performs
 sensitive operations such as approving a new Packaging Key.

 Trail of Bits 19 Pacman Security Assessment
 CONFIDENTIAL

 Trusted Signers, in quorum, act as a root of trust for pacman
 repository management.

 Attacker An attacker positioned either within or external to any of the trust
 zones previously described.

 Internal Attacker An Internal Attacker is an attacker who has transited one or more
 trust boundaries. Such an attacker may be an existing actor role in
 the system or an External Attacker who has successfully transited a
 trust boundary into the system.

 E xternal Attacker An External Attacker is an attacker who is external to the cluster
 and is unauthenticated, such as an attacker with control over
 external services.

 Trail of Bits 20 Pacman Security Assessment
 CONFIDENTIAL

 Threat Scenarios
 The following table describes possible threat scenarios given the design, architecture, and
 risk profile of the Pacman package manager.

 Scenario Actor(s) Component(s)

 An operating system provides a default mirror
 list leveraging insecure protocols. Developers of
 an operating system such as Arch Linux may
 generate a list of repository sources which leverage
 insecure protocols (e.g. HTTP, FTP). Due to pacman’s
 lack of protocol restrictions, its underlying libcurl
 dependency will communicate over the insecure
 protocol.

 If a Local User or Local Root actor uses this insecure
 protocol to fetch packages from a Local Network or
 Remote Repository, it may expose them to
 man-in-the-middle attacks. Although such an attack
 may not be problematic for signed packages,
 unsigned packages may be substituted with
 maliciously crafted packages by an Attacker.

 ● Repository
 Administrator

 ● Trusted
 Signer

 ● Attacker

 ● Pacman
 Package
 Manager

 An operating system which leverages pacman
 does not enforce signed packages by default.
 Arch Linux by default requires all packages to be
 signed to be installed, verifying they have been
 approved. In the event a Linux distribution does not
 configure pacman to require signatures, this may
 introduce risk, compounding on the threat scenario
 mentioned in the previous row of this table.

 Unsigned packages may be modified or indicative of
 a lack of approval process. They may be subject to
 modification in-flight through a man-in-the-middle
 attack that may put users at risk.

 The Package Cache containing a copy of previously
 unsigned installations may also be modified if it is
 improperly secured. By default, Arch Linux saves
 Package Cache items with special privileges that
 should disallow any user role except Local Root to
 modify them, mitigating this risk.

 ● Repository
 Administrator

 ● Packager

 ● Trusted
 Signer

 ● Attacker

 ● Pacman
 Package
 Manager

 Trail of Bits 21 Pacman Security Assessment
 CONFIDENTIAL

 An environment variable affects Pacman
 Package Manager’s libcurl dependency. For
 instance, Pacman redirects its HTTP connections
 through the proxy defined in the http_proxy
 environment variable. If an attacker injects an
 environment variable into Pacman’s runtime
 environment — a difficult prospect, given that it
 runs as root during installs — he may be able to
 cause Pacman to exhibit exploitable or undesirable
 behavior.

 ● Local Root ● Pacman
 Package
 Manager

 An Attacker attempts a substitution attack,
 bumping versions on a popular package through
 a compromised Local Network Repository or
 Remote Repository. Pacman will always install the
 latest version of a package across all repositories it
 has access to. As such, if a user has both local and
 remote repositories enabled, an attacker who is
 able to introduce an identically-named,
 higher-versioned package into one of the remote
 repositories can easily induce the user to install his
 version of the package. Similar attacks may also be
 possible via DNS confusion, e.g. if an attacker
 registers a domain that shadows a local-network
 domain name. See this GitHub blog post on
 substitution attacks against NPM.

 ● Repository
 Administrator

 ● External
 Attacker

 ● Pacman
 Package
 Manager

 ● Local Network
 Repository

 ● Remote
 Network
 Repository

 An attacker compromises a Packaging Key and
 produces different, but valid, signatures for a
 package to introduce malicious changes. In this
 case, Pacman would install the new package version
 normally, and the user would be entirely unaware.
 Currently, there is no way to enable a warning when
 a package’s signature changes.

 ● Packager

 ● Internal
 Attacker

 ● Pacman
 Package
 Manager

 ● Packaging
 Keys

 A Packaging Key or Packager is compromised,
 requiring revocation of their Packaging Key. Due
 to a lack of documented procedures for revocation,
 response by Trusted Signers may be delayed, giving
 the attacker more time to cause damage.

 ● Packager

 ● Trusted
 Signer

 ● Packaging
 Keys

 Trail of Bits 22 Pacman Security Assessment
 CONFIDENTIAL

https://github.blog/2021-02-12-avoiding-npm-substitution-attacks/

 A Trusted Signer’s key is compromised, requiring
 incident response. Due to a lack of documented
 procedures for revocation, response by the Trusted
 Signer holding the compromised key’s revocation
 key may be delayed, giving the attacker more time
 to cause damage.

 ● Trusted
 Signer

 ● Main Signing
 Keys

 ● Revocation
 Keys

 The (unsigned) Pacman database used to index
 packages may be modified by an Attacker. The
 database used by Pacman is not signed. The
 database is used as an index for packages on the
 system.

 Although most of the data used by Pacman is
 derived from signed packages on Arch Linux, the
 database is used to determine depends/replace
 directives when installing a package. This is done
 without verification that the depends/replace data
 taken from package metadata has not been
 tampered with.

 As such, an Attacker with access to the Pacman
 database may replace depends/replace directives
 within the database for a given package, to trigger a
 deletion or replace-with-empty operation of an
 existing package on the user’s system.

 ● End User

 ● Internal
 Attacker

 ● Packager

 ● Pacman
 Package
 Manager

 ● Local Network
 Repository

 ● Remote
 Network
 Repository

 Vulnerable or malicious packages are assigned a
 package group with a name identical to a
 popular, existing package. Currently, Pacman
 always resolves such a conflict in favor of the group,
 with no way to override this behavior. As such,
 users could be made to unwittingly install an
 arbitrary package or set of packages in place of a
 common package.

 ● Packager

 ● End User

 ● Pacman
 Package
 Manager

 ● Local Network
 Repository

 ● Remote
 Network
 Repository

 A naive user sets overly-permissive file
 permissions on their keyring, config files, or
 hooks. An attacker who achieves local filesystem
 access — e.g., by compromising a low-privileged

 ● End User ● Host Machine

 Trail of Bits 23 Pacman Security Assessment
 CONFIDENTIAL

 service — could inject malicious settings,
 commands, or additional trusted keys in order to
 perform privilege escalation.

 A revocation certificate or signing key (e.g.
 Package Key, Trusted Signer key) is lost or
 corrupted. In addition, since there are no standard
 procedures for regular checks of keys or their
 backup media after initial creation, it is possible that
 keys could be permanently lost. In particular, since
 revocation keys are long-lived and very rarely used,
 they may become inaccessible (e.g. through
 corrupted media) long before this fact is discovered,
 only to be realized too late when the key is sorely
 needed.

 ● Trusted
 Signer

 ● Packager

 ● Revocation
 Keys

 ● Main Signing
 Keys

 An attacker compromises a mirror of Arch Linux
 official packages, or intercepts a user’s non-TLS
 connection to a repository, and injects a
 malicious version of a package. In this case,
 Pacman would refuse to install the package, as it
 requires signatures from remote repositories by
 default.

 ● End User

 ● Repository
 Administrator

 ● Internal
 Attacker

 ● Pacman
 Package
 Manager

 ● Local Network
 Repository

 ● Remote
 Network
 Repository

 Trail of Bits 24 Pacman Security Assessment
 CONFIDENTIAL

 Recommendations
 Trail of Bits recommends that the Arch Linux team implement the following
 recommendations to mitigate the threat scenarios described above:

 1. Set Pacman to reject non-TLS mirrors by default. Since databases are not
 currently signed, an attacker who can intercept an unauthenticated connection
 between a user and a repository could modify their contents in transit. A new
 configuration value such as “AllowInsecureMirrors” can be added to pacman.conf to
 permit the use of non-TLS mirrors on a case-by-case basis if necessary for
 backwards-compatibility.

 ○ Consider also allowing users to set a minimum TLS version in
 pacman.conf , defaulting to at least TLS 1.2 (disabling specific ciphersuites
 supported in 1.2 that are known to be weak) or, ideally, TLS 1.3. Otherwise,
 HTTPS downgrade attacks may be possible against TLS-enabled mirrors that
 support older, insecure TLS versions.

 ○ Update the official Pacman mirror lists to exclude non-TLS mirrors, and
 consider modifying the reflector mirror list ranking tool to take TLS
 settings into account (i.e. ranking mirrors with stricter settings higher).

 2. Transition to signed databases and require them by default. Currently, Pacman
 gets packages’ depends/replaces lists from the database. With databases being
 unsigned, an attacker with the ability to modify them could induce a user to install
 or remove arbitrary packages.

 ○ A patch is currently in progress that would check package metadata as listed
 in the database against the metadata contained within the actual signed
 package to be installed, which partially mitigates this issue.

 3. Warn users (or give them the option to be warned) when a package’s signature
 changes during an upgrade, even if the signature is valid. This will provide a
 defense-in-depth measure against cases where an attacker gains possession of a
 valid signing key and signs a package not previously signed with that key.

 ○ Consider introducing a setting into pacman.conf that would toggle these
 warnings between “off”, “print only”, and “pause upgrade and interactively
 ask for confirmation to continue” — the latter case being suitable for
 especially cautious users. Depending on how often packages’ signing keys
 change in legitimate cases, the default of this setting could be either “print
 only” (if rare) or “off” (if common).

 4. Provide an interactive resolution prompt in cases where a package and a
 group both exist with the same name. Currently, Pacman considers group names

 Trail of Bits 25 Pacman Security Assessment
 CONFIDENTIAL

https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF

 to “shadow” identically-named packages; as such, an attacker who can tag a
 malicious or vulnerable package as belonging to a group with the same name as a
 common package — for instance, by manipulating an unsigned database — can
 cause users to unwittingly install the package of his choice. In the event of a conflict,
 the user should be prompted to make an explicit selection (in the same manner as
 “provides” induces).

 5. Have Pacman refuse to load its keyring, config files, or hooks if they are
 writable by users other than root. Analogous to SSH’s permissions checks on the
 ~/.ssh directory, this prevents users from unknowingly directing Pacman (which is
 likely running as root) to use a keyring, configuration, or hook that a lower-privileged
 user or service could maliciously modify, which could permit privilege escalation.

 6. Establish a detailed, written incident response plan that defines how to
 respond to high-severity threat scenarios, especially the following. The plan
 should detail precisely who is responsible for threat response, and the exact steps
 they should follow to mitigate the threat. Having such guidance in place ensures
 that there is no ambiguity about how to handle a security incident when it actually
 happens, ensuring the fastest and most thorough response possible.

 ○ Compromise of a Main Signer Key.

 ○ Compromise of a Packager Key.

 ○ Compromise of a DevOps-managed property such as the Arch Linux Gitlab
 account, Keycloak SSO instance, etc.

 7. Establish procedures for regularly validating Trusted Signers’ Main Signer Key
 and Revocation Key backups over time , to ensure that they remain usable and
 readily accessible. In addition, provide detailed guidance on how operators should
 configure and use cold storage backups, ensuring redundancy in case their primary
 keypair is corrupted.

 ○ Test not only the accessibility and integrity of the backup media, but also the
 viability of the keys in question: for instance, import revocation keys into a
 test keyring on a regular basis to ensure that they do indeed revoke the
 expected signing keys.

 8. Establish a written list of procedures and requirements for onboarding a new
 Trusted Signer. Currently, any potential new Trusted Signer must be well-known to
 the Arch Linux team, and a long-term participant within the Arch ecosystem,
 meaning that candidates are already extensively vetted. Formalizing this process
 would reduce the likelihood of mistakes or exceptions being made.

 Trail of Bits 26 Pacman Security Assessment
 CONFIDENTIAL

 ○ Consider verifying trusted signers’ legal IDs. The current onboarding
 process, while in effect vetting candidates’ real-world identities quite
 extensively, does not require actual verification of their legal IDs. Doing so
 would add an additional layer of defense-in-depth and better allow the Arch
 team to hold a defecting signer legally accountable if necessary.

 9. Establish standards for regular check-ups on Packagers. Currently, Trusted
 Signers make a best-effort attempt to identify Packagers who are inactive or are not
 fulfilling their duties; however, this is not done systematically or at regular intervals.
 To minimize the chance that inactive or irresponsible signers slip through the
 cracks.

 10. Establish clear security guidelines for Trusted Signers and Packagers, including
 how to generate, store, and use key material, how to report a compromise of their
 own key material, what to do if a Trusted Signer reports a compromise, and so on.

 ○ Notably, require Packagers to keep key material on hardware keys only.
 Currently, this practice is strongly encouraged, but not mandated, and some
 Packagers sign using key material on their local filesystems.

 11. Consider replacing uses of MD5 with a hashing algorithm with a lower chance
 of hash collision, such as BLAKE2. MD5 has a nontrivial chance of collisions, and it
 is feasible to intentionally craft a file with a specific MD5 hash. Some .pacsave
 backups, which use MD5 hashing to compare files, may not occur in the case of a
 hash collision even if the files in question do actually differ. However, performance
 or compatibility considerations may prohibit the use of algorithms with lower rates
 of hash collision.

 Trail of Bits 27 Pacman Security Assessment
 CONFIDENTIAL

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 scan-build A static analysis tool that can find various issues within
 C/C++ codebases.

 Default checks

 libFuzzer An in-process, coverage-guided, evolutionary fuzzing
 engine. LibFuzzer can automatically generate a set of inputs
 that exercise as many code paths in the program as
 possible.

 Appendix D

 Areas of Focus
 Our automated testing and verification work focused on the following system properties:

 ● The program does not access invalid memory addresses.

 ● The program does not exercise undefined behavior.

 Test Results
 The results of this focused testing are detailed below.

 Fuzzing harnesses. The fuzzing harnesses we developed that exercise a subset of the
 program's code.

 Property Tool Result

 fuzz_string_length – harness that checks one of utility
 functions that computes the length of a string, omitting
 ANSI escape codes

 libFuzzer TOB-PACMAN-4

 fuzz_wordsplit – harness that checks one of utility
 functions that splits a string into multiple words

 libFuzzer Did not find issues

 Trail of Bits 28 Pacman Security Assessment
 CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html
https://llvm.org/docs/LibFuzzer.html

 fuzz_parseconfigfile – harness that tests the parsing
 of config files. Requires further changes so it is chrooted
 and so that the parser doesn't include external files from
 the file system.

 libFuzzer Requires further
 development (see
 Appendix D)

 fuzz_alpm_extract_keyid – harness that tests the
 extraction of keys from signature data

 libFuzzer TOB-PACMAN-9

 Trail of Bits 29 Pacman Security Assessment
 CONFIDENTIAL

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic Although the code attempts to test the computed
 indexes or path lengths, the project does not take
 specific measures to ensure arithmetic safety. For
 example, we found an instance where an integer
 underflow occurred in a length check function.
 Additionally, oftentimes the length check values are
 computed from hardcoded integer constants, instead of
 using the sizeof() operator to compute the length of
 the hardcoded string from which the integer constant
 length is derived.

 Moderate

 Auditing Pacman generally preserves standard error from
 subprocesses (e.g., hooks), and produces useful, detailed
 messages when package operations encounter errors.

 Satisfactory

 Authentication /
 Access Controls

 Pacman itself does not require authentication or attempt
 to authenticate to other services.

 Not
 Applicable

 Complexity
 Management

 Pacman’s codebase is neatly organized, with discrete
 functionality organized into separate files and functions,
 accompanied by clear comments and documentation.

 Strong

 Configuration Pacman calls out to well-vetted third-party libraries for
 complex functionality such as downloads (libcurl) and
 signature verification (OpenSSL), and uses those libraries
 according to their respective best practices.

 Strong

 Cryptography
 and Key
 Management

 Pacman uses OpenSSL for all cryptographic operations.

 Arch Linux’s signing infrastructure has built-in resilience
 measures such as physical key backups, quorum
 requirements, and public oversight. However, no written

 Satisfactory

 Trail of Bits 30 Pacman Security Assessment
 CONFIDENTIAL

 Category Summary Result

 incident response plans exist. This could increase the
 team’s response time in the event the signing
 infrastructure is compromised.

 Data Handling While the code generally attempts to verify the data it
 receives, there were certain cases where the performed
 checks were insufficient and could cause memory
 corruption or undefined behavior.

 Moderate

 Documentation Pacman and libalpm are both extensively documented,
 including in code comments, documentation, man pages,
 and on the Arch Linux wiki.

 Strong

 Maintenance Some issues were discovered in how Arch Linux team
 members maintain the signing infrastructure itself. While
 the Arch team occasionally audits package signers on an
 informal basis, no formal process has been defined for
 how, and how often, such audits should take place. In
 addition, revocation key backups are not checked
 regularly after they are first generated; if a backup fails,
 signers may be unable to revoke a compromised key in a
 timely manner.

 Moderate

 Memory Safety
 and Error
 Handling

 We uncovered some instances of memory safety issues
 where certain parsing routines were able to read
 memory out-of-bounds. We recommend fuzzing those
 and other code paths regularly to cover more edge cases
 and help catch new problems.

 Errors are generally handled consistently within the
 codebase, though there were cases where allocation
 failures were not acted upon apart from logging, though
 this could be hard to recover from. Additionally, the code
 could benefit from better distinction of status code
 return type for its public functions (instead of being an
 int type).

 Weak

 Testing and
 Verification

 Pacman has substantial test coverage for expected
 functionality, but none that focuses on unexpected
 inputs or potentially malicious behavior (e.g. fuzz tests).

 Moderate

 Trail of Bits 31 Pacman Security Assessment
 CONFIDENTIAL

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Use-after-free vulnerability in the print_packages
 function

 Undefined
 Behavior

 Low

 2 Null pointer dereferences Denial of Service Informational

 3 Allocation failures can lead to memory leaks or
 null pointer dereferences

 Undefined
 Behavior

 Informational

 4 Buffer overflow read in string_length utility
 function

 Data Validation Undetermined

 5 Undefined behavior or potential null pointer
 dereferences by passing null pointers to functions
 requiring non-null arguments

 Data Validation Undetermined

 6 Undefined behavior from use of atoi Undefined
 Behavior

 Informational

 7 Database parsers fail silently if an option is not
 recognized

 Data Validation Informational

 8 Cache cleaning function may delete the wrong
 files

 Data Validation Informational

 9 Integer underflow in a length check leading to
 out-of-bounds read in alpm_extract_keyid

 Data Validation Undetermined

 Trail of Bits 32 Pacman Security Assessment
 CONFIDENTIAL

 Detailed Findings

 1. Use-after-free vulnerability in the print_packages function

 Severity: Low Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PACMAN-1

 Target: pacman/src/pacman/util.c

 Description
 The print_packages function has a use-after-free vulnerability. It first deallocates
 memory for the temp variable and then uses that memory in the PRINT_FORMAT_STRING
 macro (figure 1.1). This can lead to:

 ● Potential exploitation of the program if an attacker would be able to allocate and
 control the content of the temp variable after it is freed (1) and before it is used (2)
 in another thread. Note that the time window for it is very small since the two
 operations happen one after another.

 ● A double free which if detected by the allocator, would cause a program crash. The
 second free is called in the PRINT_FORMAT_STRING macro.

 The severity of this finding is low since the first scenario should not be possible because
 Pacman doesn't use multiple threads.

 This issue has been found with the scan-build static analyzer.

 void print_packages(const alpm_list_t *packages) {
 ...
 /* %s : size */
 if (strstr(temp, "%s")) {

 char *size;
 pm_asprintf(&size, "%jd" , (intmax_t)pkg_get_size(pkg));
 string = strreplace(temp, "%s" , size);
 free(size);
 free(temp); // (1) memory pointed by the temp variable is freed

 }
 /* %u : url */
 PRINT_FORMAT_STRING(temp, "%u" , alpm_pkg_get_url) // (2) use-after-free of temp

 Figure 1.1: pacman/src/pacman/util.c#L1258-1267

 #define PRINT_FORMAT_STRING(temp, format, func) \

 Trail of Bits 33 Pacman Security Assessment
 CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L1258-1267

 if(strstr(temp, format)) { \
 string = strreplace(temp, format, func(pkg)); \
 free(temp); \
 temp = string; \

 } \

 Figure 1.2: The PRINT_FORMAT_STRING macro definition

 This issue can also be detected with tools such as Valgrind (figure 1.3) or AddressSanitizer.

 # valgrind ./pacman -S --print --print-format '%s' valgrind
 == 2084 == Memcheck, a memory error detector
 == 2084 == Copyright (C) 2002-2022 , and GNU GPL'd, by Julian Seward et al.
 == 2084 == Using Valgrind -3.21.0 and LibVEX; rerun with -h for copyright info
 == 2084 == Command: ./pacman -S --print --print-format %s valgrind
 == 2084 ==
 == 2084 == Invalid read of size 1
 == 2084 == at 0x484D11D : strstr (vg_replace_strmem.c: 1792)
 == 2084 == by 0x12620B : print_packages (util.c: 1267)
 == 2084 == by 0x11F9DA : sync_prepare_execute (sync.c: 817)
 == 2084 == by 0x11F550 : sync_trans (sync.c: 728)
 == 2084 == by 0x11FF72 : pacman_sync (sync.c: 965)
 == 2084 == by 0x11B5EB : main (pacman.c: 1259)
 == 2084 == Address 0x65e61d0 is 0 bytes inside a block of size 3 free'd
 == 2084 == at 0x484412F : free (vg_replace_malloc.c: 974)
 == 2084 == by 0x1261F2 : print_packages (util.c: 1264)
 == 2084 == by 0x11F9DA : sync_prepare_execute (sync.c: 817)
 == 2084 == by 0x11F550 : sync_trans (sync.c: 728)
 == 2084 == by 0x11FF72 : pacman_sync (sync.c: 965)
 == 2084 == by 0x11B5EB : main (pacman.c: 1259)
 == 2084 == Block was alloc'd at
 == 2084 == at 0x4841848 : malloc (vg_replace_malloc.c: 431)
 == 2084 == by 0x4A183DE : strdup (strdup.c: 42)
 == 2084 == by 0x125ACB : print_packages (util.c: 1198)
 == 2084 == by 0x11F9DA : sync_prepare_execute (sync.c: 817)
 == 2084 == by 0x11F550 : sync_trans (sync.c: 728)
 == 2084 == by 0x11FF72 : pacman_sync (sync.c: 965)
 == 2084 == by 0x11B5EB : main (pacman.c: 1259)
 ...
 ==2084== ERROR SUMMARY: 50 errors from 40 contexts (suppressed: 0 from 0)

 Figure 1.3: Detecting the bug with Valgrind

 Exploit Scenario
 Pacman starts using multiple threads and uses the print_packages function in one
 thread and performs an allocation of a similar size to the freed temp variable in another
 thread with attacker-controlled content. The attacker leverages this fact to exploit the
 program by manipulating its heap memory through the vulnerable code path.

 Trail of Bits 34 Pacman Security Assessment
 CONFIDENTIAL

 Recommendations
 Short term, add an assignment of temp = string; after the temp variable is freed in the
 vulnerable code path in the print_packages function. This will prevent the use-after-free
 issue.

 Long term, regularly scan the code with static analyzers like scan-build.

 Trail of Bits 35 Pacman Security Assessment
 CONFIDENTIAL

 2. Null pointer dereferences

 Severity: Informational Difficulty: Low

 Type: Denial of Service Finding ID: TOB-PACMAN-2

 Target:
 ● pacman/src/pacman/callback.c:656-660
 ● pacman/lib/libalpm/util.c:469-481

 Description
 The cb_progress function first checks if a pkgname is a null pointer in a ternary operator (1)
 and then may use that pkgname in order to format a string in (2) or (3) (figure 2.1). This
 leads to a crash if the pkgname is a null pointer.

 The severity of this finding is informational since if the cb_progress function would be
 called with a null pointer, the program crash would be evident for the program users and
 developers.

 void cb_progress(void *ctx, alpm_progress_t event, const char *pkgname,
 int percent, size_t howmany, size_t current) {

 ...
 len = strlen(opr) + ((pkgname) ? strlen(pkgname) : 0) + 2 ; // <--- (1)
 wcstr = calloc(len, sizeof (wchar_t));
 /* print our strings to the alloc'ed memory */
 #if defined(HAVE_SWPRINTF)
 wclen = swprintf(wcstr, len, L "%s %s" , opr, pkgname); // <--- (2)
 #else
 /* because the format string was simple, we can easily do this without
 * using swprintf, although it is probably not as safe/fast. The max
 * chars we can copy is decremented each time by subtracting the length
 * of the already printed/copied wide char string. */
 wclen = mbstowcs(wcstr, opr, len);
 wclen += mbstowcs(wcstr + wclen, " " , len - wclen);
 wclen += mbstowcs(wcstr + wclen, pkgname, len - wclen); // <--- (3)
 #endif

 Figure 2.1: pacman/src/pacman/callback.c#L656-660

 An additional case of null pointer dereference is present in the
 _alpm_chroot_write_to_child() function, if the out_cb argument is null.

 Trail of Bits 36 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L656-660

 typedef ssize_t (*_alpm_cb_io)(void *buf, ssize_t len, void *ctx);

 // [...]

 static int _alpm_chroot_write_to_child (alpm_handle_t *handle, int fd,
 char *buf, ssize_t *buf_size, ssize_t buf_limit,
 _alpm_cb_io out_cb , void *cb_ctx)

 {
 ssize_t nwrite;

 if (*buf_size == 0) {
 /* empty buffer, ask the callback for more */
 if ((*buf_size = out_cb(buf, buf_limit, cb_ctx)) == 0) {

 /* no more to write, close the pipe */
 return -1 ;

 }
 }

 Figure 2.2: pacman/lib/libalpm/util.c#L469-481

 Recommendations
 Short term, fix the potential null pointer dereferences in the cb_progress and
 _alpm_chroot_write_to_child functions.

 Long term, use static analysis tools to detect cases where pointers are dereferenced
 without a preceding null check.

 Trail of Bits 37 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/util.c#L469-481

 3. Allocation failures can lead to memory leaks or null pointer dereferences

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-PACMAN-3

 Target:
 ● src/pacman/conf.c
 ● PR 96: lib/libalpm/alpm_list.c
 ● lib/libalpm/be_sync.c

 Description
 There are a few code paths where allocation failures can lead to further memory leaks or
 null pointer dereferences. Those are:

 ● If the strdup(path) allocation fails in the setdefaults function (1 and 2) (figure
 3.1), then the memory pointed by rootdir (2) would be leaked. This is because the
 SETDEFAULT macro would enter its error path and return -1 (3), not freeing the
 previously allocated memory.

 ● The alpm_list_equal_ignore_order function added in PR 96 fails to check that
 the calloc function returns a non-null value (figure 3.2). If calloc were to return
 NULL , this would lead to a null pointer dereference later on in the function (line 534).

 ● In _alpm_validate_filename , the strlen(filename) can be called with a null
 pointer if the READ_AND_STORE(pkg->filename) execution fails to allocate
 memory through the STRDUP macro use (figure 3.3).

 The severity of this finding is informational since if an allocation fails, the program would
 likely stop functioning properly as it would fail to allocate any more memory anyway.

 The first part of this issue (pertaining to conf.c , rather than alpm_list.c) has been
 found with the scan-build static analyzer.

 int setdefaults (config_t *c) {
 alpm_list_t *i;

 #define SETDEFAULT(opt, val) \
 if(!opt) { \

 opt = val; \
 if(!opt) { return -1; } \ // (3)

 }

 if (c->rootdir) {
 char * rootdir = strdup(c->rootdir); // (2)

 Trail of Bits 38 Pacman Security Assessment
 CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html

 ...
 char path[PATH_MAX];
 if (!c->dbpath) {

 snprintf(path, PATH_MAX, "%s/%s" , rootdir, &DBPATH[1]);
 SETDEFAULT(c->dbpath, strdup(path)); // (1)

 }
 if (!c->logfile) {

 snprintf(path, PATH_MAX, "%s/%s" , rootdir, &LOGFILE[1]);
 SETDEFAULT(c->logfile, strdup(path)); // (1)

 }

 Figure 3.1: pacman/src/pacman/conf.c#L1139-1153

 511 int SYMEXPORT alpm_list_equal_ignore_order (const alpm_list_t *left,
 512 const alpm_list_t *right, alpm_list_fn_cmp fn)
 513 {
 514 const alpm_list_t *l = left;
 515 const alpm_list_t *r = right;
 516 int *matched;
 517
 518 if ((l == NULL) != (r == NULL)) {
 519 return 0 ;
 520 }
 521
 522 if (alpm_list_count(l) != alpm_list_count(r)) {
 523 return 0 ;
 524 }
 525
 526 matched = calloc(alpm_list_count(right), sizeof (int));
 527
 528 for (l = left; l; l = l->next) {
 529 int found = 0 ;
 530 int n = 0 ;
 531
 532 for (r = right; r; r = r->next, n++) {
 533 /* make sure we don't match the same value twice */
 534 if (matched[n]) {
 535 continue ;
 536 }

 Figure 3.2: PR 96: lib/libalpm/alpm_list.c#L511-536

 #define READ_AND_STORE(f) do { \
 READ_NEXT(); \
 STRDUP(f, line, goto error); \

 } while(0)

 #define STRDUP(r, s, action) do { \
 if(s != NULL) { \

 r = strdup(s); \
 if(r == NULL) { \

 Trail of Bits 39 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1139-1153
https://gitlab.archlinux.org/pacman/pacman/-/blob/06ca06cf3560e8b0f0e76713d7829277d31e7856/lib/libalpm/alpm_list.c#L511-L536

 _alpm_alloc_fail(strlen(s)); \
 action; \

 } } \
 else { r = NULL; } } \

 while(0)

 READ_AND_STORE(pkg->filename);
 if (_alpm_validate_filename(db, pkg->name, pkg->filename) < 0) { ... }

 Figure 3.3: pacman/lib/libalpm/be_sync.c#L591-595

 Recommendations
 Short term, fix the memory leaks or null pointer dereferences as detailed in this finding.

 Long term, regularly scan the code with static analyzers like scan-build.

 Trail of Bits 40 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_sync.c#L591-595

 4. Bu�er overflow read in string_length utility function

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-PACMAN-4

 Target: src/pacman/util.c

 Description
 The string_length utility function (figure 4.1) skips ANSI color codes when computing the
 length. When a string includes the " \033 " byte that starts the ANSI color code sequence but
 does not have the " m " character which ends it, the function will read memory past the end
 of the string, causing a buffer overflow read.

 This can lead to a program crash or other issues, depending on how the function is used.

 static size_t string_length (const char *s) {
 int len;
 wchar_t *wcstr;

 if (!s || s[0] == '\0') {
 return 0 ;

 }
 if (strstr(s, "\033")) {

 char * replaced = malloc(sizeof (char) * strlen(s));
 int iter = 0 ;
 for (; *s; s++) {

 if (*s == '\033') {
 while (*s != 'm') {

 s++;
 }

 } else {
 replaced[iter] = *s;
 iter++;

 }
 }
 replaced[iter] = '\0' ;

 Figure 4.1: pacman/src/pacman/util.c#L452-473

 Recommendations
 Short term, fix the buffer overflow read issue in the string_length function.

 Long term, implement a fuzzing harness for the string_length function to make sure it
 doesn't contain any bugs. An example harness code for it can be found in figure 4.2 and
 which can be compiled and run using the following commands:

 Trail of Bits 41 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-473

 clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer
 ./fuzzer

 Figure 4.3 shows an example output of such a fuzzer. We also implemented this harness as
 part of the Pacman codebase as detailed in Appendix D .

 #define _XOPEN_SOURCE
 #include <stdio.h>
 #include <stdlib.h>
 #include <stdint.h>
 #include <string.h>
 #include <wchar.h>

 static size_t string_length(const char *s) { ... }

 int LLVMFuzzerTestOneInput (const uint8_t *Data, size_t Size) {
 if (Size == 0) return 0 ;

 // Prepare a null terminated string
 char * x = malloc(Size+ 1);
 memcpy(x, Data, Size);
 x[Size] = 0 ;

 string_length(x);

 free(x);
 return 0 ;

 }

 Figure 4.2: Example fuzzing harness that uses libFuzzer to test the string_length function

 $ clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer
 $./fuzzer
 INFO: Running with entropic power schedule (0xFF, 100).
 INFO: Seed: 1790240281
 INFO: Loaded 1 modules (12 inline 8-bit counters): 12 [0x56046acc5fc0,
 0x56046acc5fcc),
 INFO: Loaded 1 PC tables (12 PCs): 12 [0x56046acc5fd0,0x56046acc6090),
 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096
 bytes
 INFO: A corpus is not provided, starting from an empty corpus
 #2 INITED cov: 4 ft: 5 corp: 1/1b exec/s: 0 rss: 30Mb
 ...
 #173 REDUCE cov: 5 ft: 6 corp: 2/2b lim: 4 exec/s: 0 rss: 31Mb L: 1/1 MS: 1
 ===
 ==2873139==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000006b53
 at pc 0x56046ac84a76 bp 0x7ffd09e07ef0 sp 0x7ffd09e07ee8
 READ of size 1 at 0x602000006b53 thread T0

 #0 0x56046ac84a75 in string_length /fuzz/main.c:21:11
 #1 0x56046ac8483d in LLVMFuzzerTestOneInput /fuzz/main.c:56:2
 #2 0x56046abad383 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,

 Trail of Bits 42 Pacman Security Assessment
 CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html

 unsigned long) (/fuzz/fuzzer+0x3e383) (BuildId:
 65f386451dc943b740358c52379831570eef52be)
 …

 0x602000006b53 is located 0 bytes to the right of 3-byte region
 [0x602000006b50,0x602000006b53)
 allocated by thread T0 here:

 #0 0x56046ac499fe in malloc (/fuzz/fuzzer+0xda9fe) (BuildId:
 65f386451dc943b740358c52379831570eef52be)

 #1 0x56046ac847db in LLVMFuzzerTestOneInput /root/fuz/main.c:53:12
 ...

 SUMMARY: AddressSanitizer: heap-buffer-overflow /root/fuz/main.c:21:11 in
 string_length
 ...

 Figure 4.3: Output from the fuzzer from figure 4.2

 Trail of Bits 43 Pacman Security Assessment
 CONFIDENTIAL

 5. Undefined behavior or potential null pointer dereferences by passing null
 pointers to functions requiring non-null arguments

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-PACMAN-5

 Target: multiple codepaths

 Description
 There are a few code paths where a null pointer dereference or undefined behavior may
 happen if certain conditions are met. Those issues can be detected with the scan-build
 static analyzer or by building and by running Pacman with the undefined behavior sanitizer.
 The scan-build results were shared along with this report.

 One of the code paths found by scan-build is in the lib/libalpm/remove.c file. The
 closedir(dir) function may be called with a null pointer when the condition that calls
 regcomp(...) is true (figure 5.1). This is undefined behavior since the closedir function
 argument is marked as nonnull.

 static void shift_pacsave (alpm_handle_t *handle, const char *file) {
 DIR *dir = NULL ;
 ...
 if (regcomp(®, regstr, REG_EXTENDED | REG_NEWLINE) != 0) {

 goto cleanup;
 }

 dir = opendir(dirname); // <-- the dir was only modified here
 ...

 cleanup :
 free(dirname);
 closedir(dir);

 Figure 5.1: pacman/lib/libalpm/remove.c#L349-423

 Another case is in the mount_point_list function (figure 5.2). If the STRDUP macro is
 executed with a null pointer mnt->mnt_dir , then the strlen(mp->mount_dir) call will
 take a null pointer.

 static alpm_list_t * mount_point_list (alpm_handle_t *handle) {
 ...

 #if defined(HAVE_GETMNTENT) && defined(HAVE_MNTENT_H)
 ...
 while ((mnt = getmntent(fp))) {

 Trail of Bits 44 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/remove.c#L349-423

 CALLOC(mp, 1 , sizeof (alpm_mountpoint_t), RET_ERR(handle,
 ALPM_ERR_MEMORY, NULL));

 STRDUP(mp->mount_dir, mnt->mnt_dir, free(mp); RET_ERR(handle,
 ALPM_ERR_MEMORY, NULL));

 mp->mount_dir_len = strlen(mp->mount_dir);

 Figure 5.2: pacman/lib/libalpm/diskspace.c#L95-116

 In addition to that, figure 5.3 shows a run of pacman with undefined behavior sanitizer that
 detects other cases of this issue.

 # CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson
 setup sanitize
 # cd sanitize
 # CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson
 compile
 # ./pacman -Syuu
 :: Synchronizing package databases...
 core downloading...
 extra downloading...
 :: Starting full system upgrade...
 ../lib/libalpm/util.c:1149:9: runtime error: null pointer passed as argument 1,
 which is declared to never be null
 ../lib/libalpm/util.c:1151:10: runtime error: null pointer passed as argument 1,
 which is declared to never be null
 ../lib/libalpm/util.c:1192:4: runtime error: null pointer passed as argument 2,
 which is declared to never be null
 ...
 :: Proceed with installation? [Y/n] Y
 ...

 Figure 5.3: Running Pacman with UndefinedBehavior sanitizer

 Recommendation
 Short term, fix the cases where functions marked with non-null arguments are called with
 null pointers.

 Long term, regularly test pacman with undefined behavior sanitizer as well as scanning its
 codebase with static analyzers such as scan-build.

 Trail of Bits 45 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/diskspace.c#L95-116

 6. Undefined behavior from use of atoi

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-PACMAN-6

 Target: lib/libalpm/be_local.c, src/pacman/pacman.c

 Description
 The atoi function is used to convert strings to integers, when parsing local database files
 and command line arguments (figure 6.1, 6.2). The behavior of atoi is undefined in the
 case that the inputted string is not a valid formatted number, or in the case of an overflow.
 The severity of this finding is informational since, in practice, atoi will typically return a
 dummy value, such as 0 or -1, in the case of an incorrect input or an overflow.

 } else if (strcmp(line, "%REASON%") == 0) {
 READ_NEXT();
 info->reason = (alpm_pkgreason_t) atoi(line) ;

 Figure 6.1: Use of atoi (lib/libalpm/be_local.c#L774-776)

 case OP_ASK :
 config->noask = 1 ;
 config->ask = (unsigned int) atoi(optarg) ;
 break ;

 ...
 case OP_DEBUG :

 /* debug levels are made more 'human readable' than using a raw logmask
 * here, error and warning are set in config_new, though perhaps a
 * --quiet option will remove these later */
 if (optarg) {

 unsigned short debug = (unsigned short) atoi(optarg) ;
 switch (debug) {

 case 2 :
 config->logmask |= ALPM_LOG_FUNCTION;
 __attribute__((fallthrough));

 case 1 :
 config->logmask |= ALPM_LOG_DEBUG;
 break ;

 default :
 pm_printf(ALPM_LOG_ERROR, _("'%s' is not a valid debug

 level\n"),
 optarg);

 return 1 ;
 }

 } else {

 Trail of Bits 46 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/be_local.c#L774-776

 config->logmask |= ALPM_LOG_DEBUG;
 }
 /* progress bars get wonky with debug on, shut them off */
 config->noprogressbar = 1 ;
 break ;

 Figure 6.2: Uses of atoi (src/pacman/pacman.c#L382-430)

 Recommendations
 Short term, use the strtol function instead of atoi . Check the errno value after calling
 strtol to check for a failed conversion. Make sure to perform bounds checking when
 casting the long value returned by strtol down to an int .

 Trail of Bits 47 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/src/pacman/pacman.c#L382-430

 7. Database parsers fail silently if an option is not recognized

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-PACMAN-7

 Target: lib/libalpm/be_sync.c, lib/libalpm/be_local.c

 Description
 The sync_db_read and local_db_read functions, which are responsible for parsing sync
 database files and local database files respectively, fail silently if an option is not
 recognized. This can cause a configuration option to not be set which may cause issues if,
 for example, the local installation of Pacman is out of date and does not support
 newly-added configuration options.

 Exploit Scenario
 Support for SHA-3 hash verification is added, along with a corresponding configuration
 option %SHA3SUM% . Older installations of Pacman, which do not support this configuration
 option, will instead ignore it. This causes package hashes to not be verified.

 Recommendations
 Short term, add default behavior in the sync_db_read and local_db_read functions for
 when a configuration option is not recognized. Unrecognized options should cause a log
 message or an error.

 Trail of Bits 48 Pacman Security Assessment
 CONFIDENTIAL

 8. Cache cleaning function may delete the wrong files

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-PACMAN-8

 Target: src/pacman/sync.c

 Description
 In the sync_cleancache function, a path is constructed for deletion using the snprintf
 function. A maximum path length of PATH_MAX is given (on Linux, this value is 4096
 characters). However, there is no check to ensure that the path created by snprintf was
 not cut short by the limit. This can lead to a different path than intended getting deleted.

 The severity of this finding is informational since it is highly unlikely that Pacman would use
 a path this long in practice.

 /* build the full filepath */
 snprintf(path, PATH_MAX, "%s%s" , cachedir, ent->d_name);

 /* short circuit for removing all files from cache */
 if (level > 1) {

 ret += unlink_verbose(path, 0);
 continue ;

 }

 Figure 8.1: pacman/src/pacman/sync.c#L241-248

 Recommendations
 Short term, add a check which compares the value returned by snprintf and ensures that
 it is less than PATH_MAX .

 Trail of Bits 49 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/sync.c#L241-248

 9. Integer underflow in a length check leading to out-of-bounds read in
 alpm_extract_keyid

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-PACMAN-9

 Target: lib/libalpm/signing.c

 Description
 The alpm_extract_keyid function (figure 9.1) contains an out-of-bounds read issue due
 to an integer underflow in length_check function when a specifically crafted input is
 provided (figure 9.2).

 int SYMEXPORT alpm_extract_keyid (alpm_handle_t *handle, const char *identifier,
 const unsigned char *sig, const size_t len, alpm_list_t **keys) {

 size_t pos, blen, hlen, ulen;
 pos = 0 ;

 while (pos < len) {
 if (!(sig[pos] & 0x80)) { ... - return signature format error }

 if (sig[pos] & 0x40) {
 /* new packet format */
 if (length_check(len, pos, 1 , handle, identifier) != 0) {

 return -1 ;
 }
 pos = pos + 1 ;

 Figure 9.1: pacman/lib/libalpm/signing.c#L1101-1223

 /* Check to avoid out of boundary reads */
 static size_t length_check (size_t length, size_t position, size_t a,

 alpm_handle_t *handle, const char *identifier) {
 if (a == 0 || length - position <= a) {

 _alpm_log(handle, ALPM_LOG_ERROR,
 _("%s: signature format error\n"), identifier);

 return -1 ;
 } else {

 return 0 ;
 }

 }

 Figure 9.2: pacman/lib/libalpm/signing.c#L1043-1054

 Trail of Bits 50 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1043-1054

 The length_check function is used to confirm if advancing a position (pos) index is safe. It
 is used by alpm_extract_keyid for example in the following way:

 length_check(len, pos, 2, handle, identifier)

 The len is the length of the signature buffer (sig) and pos is an index in that buffer.
 However, the pos index can be bigger than the len variable and when that happens, then
 the length-position computation in the length_check function underflows and the
 function returns 0, leading to the out-of-bounds read.

 We found this issue by fuzzing the alpm_extract_keyid function. The fuzzing harness
 code is included in Appendix D .

 Recommendation
 Short term, fix the integer underflow issue in the length_check function. This will prevent
 out-of-bound reads in the alpm_extract_keyid function.

 Long term, fuzz the Pacman functions, for example as shown in Appendix D .

 Trail of Bits 51 Pacman Security Assessment
 CONFIDENTIAL

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 52 Pacman Security Assessment
 CONFIDENTIAL

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 53 Pacman Security Assessment
 CONFIDENTIAL

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 54 Pacman Security Assessment
 CONFIDENTIAL

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 55 Pacman Security Assessment
 CONFIDENTIAL

 C. Code Quality Findings

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 Remove the if (fd >= 0) condition in the _alpm_pkg_load_internal function
 since it is always true. This is because if the fd is less than 0 the function returns NULL in
 a previous condition.

 alpm_pkg_t * _alpm_pkg_load_internal (alpm_handle_t *handle,
 const char *pkgfile, int full) {

 int ret, fd;
 ...
 fd = _alpm_open_archive(handle, pkgfile, &st, &archive, ALPM_ERR_PKG_OPEN);
 if (fd < 0)

 ...
 return NULL ;

 }
 ...

 error :
 _alpm_pkg_free(newpkg);
 _alpm_archive_read_free(archive);
 if (fd >= 0) {

 close(fd);
 }

 return NULL ;
 }

 Figure C.1: pacman/lib/libalpm/be_package.c#L569-688

 Use the strdup function to duplicate a string in the clean_filename function. This
 can be done instead of computing the string length, allocating memory and copying the
 filename with memcpy .

 static char * clean_filename (const char *filename) {
 int len = strlen(filename);
 char *p;
 char *fname = malloc(len + 1);
 memcpy(fname, filename, len + 1);

 Figure C.2: pacman/src/pacman/callback.c#L755-760

 Trail of Bits 56 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_package.c#L569-688
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L755-760

 Refactor the dead assignment to the curlerr variable in the
 curl_check_finished_download function. The assignment should be either removed or
 there should be code that would act upon its value.

 static int curl_check_finished_download (alpm_handle_t *handle, CURLM *curlm, CURLMsg
 *msg, const char *localpath, int *active_downloads_num) {

 ...
 CURLcode curlerr;
 ...

 case CURLE_ABORTED_BY_CALLBACK :
 /* handle the interrupt accordingly */
 if (dload_interrupted == ABORT_OVER_MAXFILESIZE) {

 curlerr = CURLE_FILESIZE_EXCEEDED;
 payload->unlink_on_fail = 1 ;
 handle->pm_errno = ALPM_ERR_LIBCURL;
 _alpm_log(handle, ALPM_LOG_ERROR,

 _("failed retrieving file '%s' from %s :
 expected download size exceeded\n"),

 payload->remote_name, hostname);
 server_soft_error(handle, payload->fileurl);

 }
 goto cleanup;

 ...
 cleanup :

 ... // <-- code that does not use the curlerr variable
 return ret;

 }

 Figure C.3: pacman/lib/libalpm/dload.c#L535-546

 Remove the r variable from the _cache_mtree_open function and an assignment to
 it since it is unused. Alternatively, if it is intended, use the value of r within the if
 condition.

 static struct archive *_cache_mtree_open(alpm_pkg_t *pkg) {
 int r;
 ...
 if ((r = _alpm_archive_read_open_file(mtree, mtfile, ALPM_BUFFER_SIZE))) {

 _alpm_log(pkg->handle, ALPM_LOG_ERROR, _("error while reading file %s:
 %s\n"),

 mtfile, archive_error_string(mtree));
 _alpm_archive_read_free(mtree);
 GOTO_ERR(pkg->handle, ALPM_ERR_LIBARCHIVE, error);

 }

 free(mtfile);
 return mtree;

 error :
 free(mtfile);
 return NULL ;

 Trail of Bits 57 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L535-546

 }

 Figure C.4: pacman/lib/libalpm/be_local.c#L251-284

 Return an error if the call to malloc fails in alpm_list_add_sorted function.
 Currently, the function returns the existing list, even though it failed to insert the element
 as expected. This function is currently unused, so this does not yet pose a security concern.

 add = malloc(sizeof (alpm_list_t));
 if (add == NULL) {

 return list;
 }

 Figure C.5: pacman/lib/libalpm/alpm_list.c#L115-118

 Restore the list variable to its original state before returning in the
 alpm_list_reverse function. In the beginning of the function, the list->prev member
 is backed up and then modified. However, in the case of an error, this backup is not
 restored, leaving the list in an invalid state.

 alpm_list_t SYMEXPORT *alpm_list_reverse(alpm_list_t *list) {
 const alpm_list_t *lp;
 alpm_list_t *newlist = NULL , *backup;

 if (list == NULL) {
 return NULL ;

 }

 lp = alpm_list_last(list);
 /* break our reverse circular list */
 backup = list->prev;
 list->prev = NULL ;

 while (lp) {
 if (alpm_list_append(&newlist, lp->data) == NULL) {

 alpm_list_free(newlist);
 return NULL ;

 }
 lp = lp->prev;

 }
 list->prev = backup; /* restore tail pointer */
 return newlist;

 }

 Figure C.6: pacman/lib/libalpm/alpm_list.c#L403-426

 Rename the type variable to event in the alpm_list_reverse function. When a
 download payload is sent over a pipe in PR 23 (from the _alpm_sandbox_cb_dl function

 Trail of Bits 58 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L251-284
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L115-118
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L403-426
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L126

 to the _alpm_sandbox_process_cb_download function), a variable called event is sent
 through the pipe and received into a variable called type . This can cause confusion when
 reading the sending and receiving code.

 Rework the had_error variable in the curl_download_internal_sandboxed
 function. The variable will always be set to true by the time the loop shown in figure C.7
 exits. This is because every break statement is accompanied with a statement setting
 had_error to true . This means that the variable does not track any useful information.

 bool had_error = false ;
 while (true) {

 _alpm_sandbox_callback_t callback_type;
 ssize_t got = read(callbacks_fd[0], &callback_type, sizeof (callback_type));
 if (got < 0 || (size_t)got != sizeof (callback_type)) {

 had_error = true ;
 break ;

 }

 if (callback_type == ALPM_SANDBOX_CB_DOWNLOAD) {
 if (!_alpm_sandbox_process_cb_download(handle, callbacks_fd[0])) {

 had_error = true ;
 break ;

 }
 }
 else if (callback_type == ALPM_SANDBOX_CB_LOG) {

 if (!_alpm_sandbox_process_cb_log(handle, callbacks_fd[0])) {
 had_error = true ;
 break ;

 }
 }

 }

 if (had_error) {
 kill(pid, SIGTERM);

 }

 Figure C.7: PR 23: pacman/lib/libalpm/dload.c#L974-1000

 Verify the %REASON% field before casting it to an alpm_pkgreason_t enum value in
 the local_db_read function. Otherwise, the field may contain a value which is a valid
 integer but not a valid alpm_pkgreason_t value.

 } else if (strcmp(line, "%REASON%") == 0) {
 READ_NEXT();
 info->reason = (alpm_pkgreason_t)atoi(line);

 Figure C.8: pacman/lib/libalpm/be_local.c#L774-776

 Trail of Bits 59 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L180
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/dload.c#L974-1000
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L774-776

 Correct the log message at the end of the curl_download_internal function. The
 message incorrectly states the value returned by the function.

 _alpm_log(handle, ALPM_LOG_DEBUG, "curl_download_internal return code is %d\n" ,
 err);
 return err ? -1 : updated ? 0 : 1 ;

 Figure C.9: pacman/lib/libalpm/dload.c#L937-938

 Refactor the ALPM public functions from returning an int to return a status type.
 This new type could be a typedef for an int . Such a change would make it easier to
 perform static analysis to find all functions that return the typedef and ensure that the
 callers check for errors.

 [Errors]

 The library provides a global variable pm_errno.
 It aims at being to the library what errno is for C system calls.

 Almost all public library functions are returning an integer value: 0
 indicating success, -1 indicating a failure.
 If -1 is returned, the variable pm_errno is set to a meaningful value
 Wise frontends should always care for these returned values.

 Note: the helper function alpm_strerror() can also be used to translate one
 specified error code into a more friendly sentence, and alpm_strerrorlast()
 does the same for the last error encountered (represented by pm_errno).

 Figure C.10: pacman/README?plain=1#L144-156

 Trail of Bits 60 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L937-938
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/README?plain=1#L144-156

 D. Fuzzing Pacman code

 During the audit, Trail of Bits used fuzzing, an automated testing technique in which code
 paths are executed with random data to find bugs resulting from the incorrect handling of
 unexpected data. For this, we used libFuzzer , an in-process coverage-guided fuzzer, and we
 extended the Pacman build system with new executables to fuzz certain code paths. This
 helped us to find issues detailed in findings TOB-PACMAN-4 and TOB-PACMAN-9 .

 We implemented fuzzing harnesses for:

 ● The string_length function
 ● The wordsplit function
 ● Parsing of config files through the parseconfigfile function
 ● The extraction of keys from signature data through the alpm_extract_keyid

 function

 For this, we also modified the meson.build file so that all the files are built with
 AddressSanitizer (-fsanitize=address compiler and linker flag) that helps detect more
 bugs. In order to build the harnesses and run them, we leveraged the following commands:

 CC=clang meson setup fuzz
 cd fuzz
 CC=clang meson compile <harness, e.g., fuzz_alpm_extract_keyid>
 ./<harness binary>

 We used the clang compiler because in our case, where we performed fuzzing in an Arch
 Linux docker container, the GCC compiler did not support the -fsanitize=fuzzer flag
 that enables the libFuzzer fuzzing framework.

 The implemented code can be seen in figure D.1 and will also be sent as a merge request
 against the Pacman repository after the final readout of this report.

 Fuzzing harness notes
 Below we present some notes about the changes and harnesses we developed.

 ● The add_project_arguments added to the meson.build is suboptimal and has
 to be refactored, so it is enabled only when fuzzing harnesses are built, or the
 specific dependencies/libraries need to have separate fuzzing targets so they are
 built with AddressSanitizer enabled.

 ● None of the external dependencies are built with AddressSanitizer or
 UndefinedBehavior sanitizer. This may cause false positive crashes when new
 harnesses are developed that leverage the code paths of those dependencies, or it
 may lead to not detecting valid bugs.

 Trail of Bits 61 Pacman Security Assessment
 CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-490
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/common/util-common.c#L238-337
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1192-1197
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://github.com/google/sanitizers/wiki/AddressSanitizer

 ● We encountered some issues with including headers from src/pacman in
 fuzz_parseconfigfile and fuzz_string_length harnesses, which we worked
 around by providing the fuzzed function declarations in the harnesses itself. This
 should be fixed so that the headers are included properly. The same goes for, e.g.,
 the extern void *config; global variable.

 ● The fuzz_wordsplit harness can be refactored to free its resources via the
 wordsplit_free function.

 ● The fuzz_alpm_extract_keyid does not set proper handle or filename
 arguments. Setting these arguments may leverage more code paths in the harness.

 ● The fuzz_parseconfigfile is far from ideal: the generated input may include
 other files from the filesystem to be parsed by the code, which is nondeterministic.
 The solution to that could be:

 ○ Either use chroot or mount namespaces so that the fuzzer works in an
 isolated filesystem with no other files included,

 ○ Or changing the harness so it only generates semi-valid config files.
 ● We added an #ifndef FUZZING_PACMAN to remove the main function of Pacman

 for the fuzzing harnesses which need the src/pacman code. Otherwise, the linking of
 the harness would fail due to multiple definitions of the main symbol.

 Recommendations and further work
 Going further, we recommend the Pacman team to:

 ● Refactor the build system to better support the building of fuzzing harnesses
 (instead of setting global arguments as we did).

 ● Extend the build system so it also builds all of the dependencies’ code with
 sanitizers enabled.

 ● Test and fuzz the code with other sanitizers enabled that we haven't tried here (e.g.,
 MemorySanitizer or ThreadSanitizer in case threads would ever be used in Pacman).

 ● Implementing more fuzzing harnesses, for example for the
 dload_parseheader_cb function and other functionalities that parse untrusted
 data.

 ● Fuzzing Pacman continuously with each release. This can be done by integrating it
 into the oss-fuzz project , which allows for free fuzzing of open source projects.
 However, please note that the company beyond the oss-fuzz project, Google, will
 know about the found vulnerabilities first.

 diff --git a/meson.build b/meson.build
 index 43705338. .bfeca3af 100644
 --- a/meson.build
 +++ b/meson.build
 @@ -14 , 6 + 14 , 8 @@ libalpm_version = ' 13.0.1 '

 cc = meson.get_compiler('c')

 +add_project_arguments(['-fsanitize=address', '-fno-omit-frame-pointer', '-ggdb', '-O0'], language : 'c')

 Trail of Bits 62 Pacman Security Assessment
 CONFIDENTIAL

https://github.com/google/oss-fuzz

 +
 # commandline options
 PREFIX = get_option('prefix')
 DATAROOTDIR = join_paths(PREFIX, get_option('datarootdir'))
 @@ -305 , 6 + 307 , 8 @@ subdir('src/pacman')
 subdir('src/util')
 subdir('scripts')

 +subdir('src/fuzzing')
 +
 # Internationalization
 if get_option('i18n')

 i18n = import ('i18n')
 @@ -396 , 6 + 400 , 45 @@ executable(

 install : true ,
)

 +# Note: fuzz targets below must be built with Clang compiler for the -fsanitize=fuzzer flag
 +executable(
 + 'fuzz_wordsplit',
 + fuzz_wordsplit_sources,
 + include_directories : includes,
 + link_with : [libcommon],
 + dependencies : [],
 + c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer'],
 + link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer'],
 +)
 +
 +executable(
 + 'fuzz_string_length',
 + [fuzz_string_length_sources, pacman_sources],
 + include_directories : includes,
 + link_with : [libalpm_a, libcommon],
 + dependencies : [],
 + c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
 + link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer'],
 +)
 +executable(
 + 'fuzz_alpm_extract_keyid',
 + [fuzz_alpm_extract_keyid_sources, pacman_sources],
 + include_directories : includes,
 + link_with : [libalpm_a, libcommon],
 + dependencies : [],
 + c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
 + link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer'],
 +)
 +executable(
 + 'fuzz_parseconfigfile',
 + [fuzz_parseconfigfile_sources, pacman_sources],
 + include_directories : includes,
 + link_with : [libalpm_a],
 + dependencies : [],
 + c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
 + link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-O0', '-fno-omit-frame-pointer'],
 +)
 +
 foreach wrapper : script_wrappers

 cdata = configuration_data()
 cdata.set_quoted('BASH', BASH.full_path())

 diff --git a/src/fuzzing/fuzz_alpm_extract_keyid.c b/src/fuzzing/fuzz_alpm_extract_keyid.c
 new file mode 100644
 index 00000000. .febbd57a
 --- /dev/null
 +++ b/src/fuzzing/fuzz_alpm_extract_keyid.c
 @@ -0 , 0 + 1 , 26 @@
 +#define _XOPEN_SOURCE
 +#include <stdio.h>
 +#include <stdlib.h>

 Trail of Bits 63 Pacman Security Assessment
 CONFIDENTIAL

 +#include <stdint.h>
 +#include <string.h>
 +#include <wchar.h>
 +
 + /* libalpm */
 +#include "alpm.h"
 +#include "alpm_list.h"
 +#include "handle.h"
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 + if (Size == 0)
 + return 0 ;
 +
 + alpm_handle_t handle; // TODO/FIXME?
 + const char * filename = "/dev/null" ; // TODO/FIXME?
 +
 + alpm_list_t *keys = NULL ;
 + alpm_extract_keyid(&handle, filename, /* sig */ Data, /* len */ Size, &keys);
 +
 + return 0 ;
 +}
 diff --git a/src/fuzzing/fuzz_parseconfigfile.c b/src/fuzzing/fuzz_parseconfigfile.c
 new file mode 100644
 index 00000000..4746141 d
 --- /dev/null
 +++ b/src/fuzzing/fuzz_parseconfigfile.c
 @@ -0 , 0 + 1 , 43 @@
 +#include <stdio.h>
 +#include <stdlib.h>
 +#include <stdint.h>
 +#define _GNU_SOURCE
 +#include <sys/mman.h>
 +#include <unistd.h>
 +
 + // TODO/FIXME: Fix the util.h include
 + //#include "conf.h"
 + // And remove that function header from here
 + int parseconfigfile(const char *s);
 + extern void *config;
 + void *config_new(void);
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
 +
 + // TODO/FIXME: This fuzzer should always be run from a chroot
 + // without any other files in it; otherwise the configfile may refer
 + // to other files
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 + static void * config_object = 0 ;
 +
 + // TODO/FIXME: The harness needs to be run with -detect_leaks=0
 + // because the config object here is detected as a leak
 + if (!config_object) {
 + config = config_object = config_new();
 + }
 +
 + if (Size == 0)
 + return 0 ;
 +
 + int fd = memfd_create("input" , 0); // create an in-memory file we can have path to
 + write(fd, Data, Size);
 +
 + char path[64] = { 0 };
 + sprintf(path, "/proc/self/fd/%d" , fd);
 +
 + parseconfigfile(path);
 +

 Trail of Bits 64 Pacman Security Assessment
 CONFIDENTIAL

 + close(fd);
 +
 + return 0 ;
 +}
 diff --git a/src/fuzzing/fuzz_string_length.c b/src/fuzzing/fuzz_string_length.c
 new file mode 100644
 index 00000000..8991 b476
 --- /dev/null
 +++ b/src/fuzzing/fuzz_string_length.c
 @@ -0 , 0 + 1 , 26 @@
 +#include <stdio.h>
 +#include <stdlib.h>
 +#include <string.h>
 +
 + // TODO/FIXME: Fix the util.h include
 + //#include "util.h"
 + // And remove that function header from here
 + size_t string_length(const char *s);
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 + if (Size == 0)
 + return 0 ;
 +
 + // Prepare a null terminated string
 + char * cstring = malloc(Size+ 1);
 + memcpy(cstring, Data, Size);
 + cstring[Size] = 0 ;
 +
 + string_length(cstring);
 +
 + free(cstring);
 +
 + return 0 ;
 +}
 diff --git a/src/fuzzing/fuzz_wordsplit.c b/src/fuzzing/fuzz_wordsplit.c
 new file mode 100644
 index 00000000. .e2e10210
 --- /dev/null
 +++ b/src/fuzzing/fuzz_wordsplit.c
 @@ -0 , 0 + 1 , 36 @@
 +#define _XOPEN_SOURCE
 +#include <stdio.h>
 +#include <stdlib.h>
 +#include <stdint.h>
 +
 +#include "util-common.h"
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
 +
 + int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 + if (Size == 0)
 + return 0 ;
 +
 + // Prepare a null terminated string
 + char * cstring = malloc(Size+ 1);
 + memcpy(cstring, Data, Size);
 + cstring[Size] = 0 ;
 +
 + char ** ptr = wordsplit(cstring);
 +
 + // Free the memory allocated by wordsplit
 + if (ptr) {
 + int i = 0 ;
 + char * p = ptr[i++];
 + while (p) {
 + free(p);

 Trail of Bits 65 Pacman Security Assessment
 CONFIDENTIAL

 + p = ptr[i++];
 + }
 + free(ptr);
 + }
 +
 + // Free the allocated cstring
 + free(cstring);
 +
 + return 0 ;
 +}
 diff --git a/src/fuzzing/meson.build b/src/fuzzing/meson.build
 new file mode 100644
 index 00000000..9 a8555c2
 --- /dev/null
 +++ b/src/fuzzing/meson.build
 @@ -0 , 0 + 1 , 15 @@
 +fuzz_wordsplit_sources = files('''
 + fuzz_wordsplit.c
 +'''.split())
 +
 +fuzz_string_length_sources = files('''
 + fuzz_string_length.c
 +'''.split())
 +
 +fuzz_alpm_extract_keyid_sources = files('''
 + fuzz_alpm_extract_keyid.c
 +'''.split())
 +
 +fuzz_parseconfigfile_sources = files('''
 + fuzz_parseconfigfile.c
 +'''.split())
 \ No newline at end of file
 diff --git a/src/pacman/pacman.c b/src/pacman/pacman.c
 index e5c6e420. .77 c88392 100644
 --- a/src/pacman/pacman.c
 +++ b/src/pacman/pacman.c
 @@ -1079 , 6 + 1079 , 7 @@ static void cl_to_log(int argc, char *argv[])

 }
 }

 +#ifndef FUZZING_PACMAN
 /** Main function.
 * @param argc
 * @param argv

 @@ -1273,3 +1274,4 @@ int main(int argc, char *argv[])
 /* not reached */
 return EXIT_SUCCESS;

 }
 +#endif //FUZZING_PACMAN
 diff --git a/src/pacman/util.c b/src/pacman/util.c
 index 5 d42a6e9..a41c9e5e 100644
 --- a/src/pacman/util.c
 +++ b/src/pacman/util.c
 @@ -449 , 7 + 449 , 7 @@ static char *concat_list(alpm_list_t *lst, formatfn fn)

 return output;
 }

 - static size_t string_length(const char *s)
 + size_t string_length(const char *s)
 {

 int len;
 wchar_t *wcstr;

 diff --git a/src/pacman/util.h b/src/pacman/util.h
 index 52e79915 ..d8f7f5f2 100644
 --- a/src/pacman/util.h
 +++ b/src/pacman/util.h
 @@ -47 , 6 + 47 , 7 @@ typedef struct _pm_target_t {

 int is_explicit;

 Trail of Bits 66 Pacman Security Assessment
 CONFIDENTIAL

 } pm_target_t;

 + size_t string_length(const char *s);
 void trans_init_error (void);
 /* flags is a bitfield of alpm_transflag_t flags */
 int trans_init (int flags, int check_valid);

 Figure D.1: The diff for the fuzzing harness code

 Trail of Bits 67 Pacman Security Assessment
 CONFIDENTIAL

 E. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From March 4 to Month 6, 2024, Trail of Bits reviewed the fixes and mitigations
 implemented by the Arch Linux team for the issues identified in this report. We reviewed
 each fix to determine its effectiveness in resolving the associated issue.

 In summary, of the 9 issues described in this report, Arch Linux has resolved 7 issues, and
 has partially resolved 2 issues. For additional information, please see the Detailed Fix
 Review Results below.

 ID Title Status

 1 Use-after-free vulnerability in the print_packages function Resolved

 2 Null pointer dereferences Resolved

 3 Allocation failures can lead to memory leaks or null pointer
 dereferences

 Resolved

 4 Buffer overflow read in string_length utility function Resolved

 5 Undefined behavior or potential null pointer dereferences by passing
 null pointers to functions requiring non-null arguments

 Partially
 Resolved

 6 Undefined behavior from use of atoi Resolved

 7 Database parsers fail silently if an option is not recognized Resolved

 8 Cache cleaning function may delete the wrong files Partially
 Resolved

 9 Integer underflow in a length check leading to out-of-bounds read in
 alpm_extract_keyid

 Resolved

 Trail of Bits 68 Pacman Security Assessment
 CONFIDENTIAL

 Detailed Fix Review Results
 TOB-PACMAN-1: Use-after-free vulnerability in the print_packages function
 Resolved in commit 36fcff6e . This commit adds an assignment which overwrites the
 freed temp variable with the newly allocated string variable.

 TOB-PACMAN-2: Null pointer dereferences
 Resolved in commit 74deada5 . This commit adds the necessary checks to determine
 whether or not the pkgname variable is null before using it.

 The Pacman developers correctly identified that the write_to_child function can only
 ever be called with a non-null callback, so a fix for that portion of the issue was not
 necessary.

 TOB-PACMAN-3: Allocation failures can lead to memory leaks or null pointer
 dereferences
 Resolved in commits 6711d10f and abc6dd74 . Commit 6711d10f adds a check to the
 setdefaults function which ensures that the pointer returned strdup is non-null before
 using it. Commit abc6dd74 adds a check to the alpm_list_cmp_unsorted function which
 ensures that the pointer returned by calloc is non-null before using it.

 The Pacman developers identified the code in figure 3.3 as not being an issue. We have
 confirmed that this is the case: it should not be possible for the line variable to be null
 without the goto error statement being executed; this prevents pkg->filename from
 being null in the call to the _alpm_validate_filename function.

 TOB-PACMAN-4: Buffer overflow read in string_length utility function
 Resolved in commit c9c56be3 . This commit changes the string_length function so that it
 loops under more strict conditions: it stops once it reaches a character that isn’t a digit or a
 semicolon, rather reading until an ‘m’ is found.

 TOB-PACMAN-5: Undefined behavior or potential null pointer dereferences by
 passing null pointers to functions requiring non-null arguments
 Partially resolved in commits f996f301 and ce528a26 . Commit f996f301 adds a check to the
 shift_pacsave function which ensures that the dir pointer is non-null before using it in
 a closedir(dir) call. Commit ce528a26 adds a check to the mount_point_list
 function which ensures that the mnt->mnt_dir value is non-null before attempting to
 duplicate it into mp->mount_dir using the STRDUP macro. This ensures that
 mp->mount_dir will be non-null as well, which prevents undefined behavior during the call
 to strlen(mp->mount_dir) .

 The instances of undefined behavior shown in figure 5.3 have not been resolved.

 Trail of Bits 69 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/commit/36fcff6e13ac65797936faf716e4295eaf52ad48
https://gitlab.archlinux.org/pacman/pacman/-/commit/74deada511358a4ce9c10ee0c6ae216e2c6c6b73#
https://gitlab.archlinux.org/pacman/pacman/-/commit/6711d10f96e0862f7b0b086d3a35358787b6d552#
https://gitlab.archlinux.org/pacman/pacman/-/commit/abc6dd7411c57cad0805b3cf51271847d9d0679e#
https://gitlab.archlinux.org/pacman/pacman/-/commit/c9c56be3960c7ba7ccacc7ccc992965f16b9eba0
https://gitlab.archlinux.org/pacman/pacman/-/commit/f996f301631625d7b98b60ebd1b6dad1f3a11a74#
https://gitlab.archlinux.org/pacman/pacman/-/commit/ce528a26549f9456d5126f40347af44e69f448c1#

 TOB-PACMAN-6: Undefined behavior from use of atoi
 Resolved in commit 6e6d3f18 and PR 136 . Commit 6e6d3f18 replaces the use of atoi in
 the _alpm_local_db_pkgpath function with a set of strcmp comparisons. PR 136
 replaces the uses of atoi in the parsearg_global function with calls to strtol ,
 performing all the necessary error checks.

 TOB-PACMAN-7: Database parsers fail silently if an option is not recognized
 Resolved in commit e1dc6099 . This commit adds a warning message which is logged in the
 case of an unknown option.

 TOB-PACMAN-8: Cache cleaning function may delete the wrong files
 Partially resolved in commit a6b25247 . This commit adds a check determining whether len
 > PATH_MAX , and skipping the current file if this is the case. However, the check should
 instead determine whether len >= PATH_MAX , since the value returned by the snprintf
 function does not count the trailing null character.

 In addition, the commit also fixes a very similar issue in the sync_cleandb function which
 was not found during the audit. However, the fix for the sync_cleandb function only
 prints an error message in the case of a problem, but does not skip the current file. In
 addition, the fix has the same issue mentioned above of using the > operator rather than
 the >= operator.

 TOB-PACMAN-9: Integer underflow in a length check leading to out-of-bounds read in
 alpm_extract_keyid
 Resolved in commit 16a2a797 . This commit adds an additional check for position >
 length before computing length - position . If position is greater than length , an
 error is returned.

 Trail of Bits 70 Pacman Security Assessment
 CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/commit/6e6d3f18e3a8d4cd4376c0922fdcaad354d35359
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/136
https://gitlab.archlinux.org/pacman/pacman/-/commit/e1dc609939cc5025213a51b76cf7c74b12eeab54
https://gitlab.archlinux.org/pacman/pacman/-/commit/a6b2524762eb3c024f5e6f58253f6f811e3d2dd3
https://gitlab.archlinux.org/pacman/pacman/-/commit/16a2a79728d6b3184fd36156b79b3c91d73b9292

 F. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 71 Pacman Security Assessment
 CONFIDENTIAL

