TRAL
B'Ts

Pacman
Security Assessment and Lightweight Threat Model

March 7, 2024

Prepared for:
Levente Polyak
Organized by the Open Technology Fund

Prepared by: Spencer Michaels, David Pokora, Sam Alws, and Dominik Czarnota

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Pacman Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be business confidential information; it is
licensed to the Open Technology Foundation under the terms of the project statement of
work and intended solely for internal use by the Open Technology Foundation. Material
within this report may not be reproduced or distributed in part or in whole without the
express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Pacman Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 9
Project Targets 10
Project Coverage 11
Threat Model 12
Data Types 12
Data Flow 12
Components and Trust Zones 14
Trust Zone Connections 17
Threat Actors 19
Threat Scenarios 21
Recommendations 25
Automated Testing 28
Codebase Maturity Evaluation 30
Summary of Findings 32
Detailed Findings 33
1. Use-after-free vulnerability in the print_packages function 33
2. Null pointer dereferences 36
3. Allocation failures can lead to memory leaks or null pointer dereferences 38
4. Buffer overflow read in string_length utility function 41
5. Undefined behavior or potential null pointer dereferences by passing null pointers to
functions requiring non-null arguments 44
6. Undefined behavior from use of atoi 46
7. Database parsers fail silently if an option is not recognized 48
8. Cache cleaning function may delete the wrong files 49
9. Integer underflow in a length check leading to out-of-bounds read in
alpm_extract_keyid 50
A. Vulnerability Categories 52
B. Code Maturity Categories 54
C. Code Quality Findings 56
D. Fuzzing Pacman code 61
Fuzzing harness notes 61

Trail of Bits
CONFIDENTIAL

Pacman Security Assessment

Recommendations and further work 62

E. Fix Review Results 68

Detailed Fix Review Results 69
F. Fix Review Status Categories 7
Trail of Bits 4 Pacman Security Assessment

CONFIDENTIAL

Project Summary

Contact Information
The following project managers were associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering directors were associated with this project:

Anders Helsing, Engineering Director, Application Security
anders.helsing@trailofbits.com

The following consultants were associated with this project:

Spencer Michaels, Consultant David Pokora, Consultant
spencer.michaels@trailofbits.com david.pokora@trailofbits.com
Dominik Czarnota, Consultant Sam Alws, Consultant
dominik.czarnota@trailofbits.com sam.alws@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

November 13, 2023 Pre-project kickoff call

November 14, 2023 Discovery meeting #1

November 15, 2023 Discovery meeting #2

November 16, 2023 Discovery meeting #3

December 5, 2023 Delivery of report draft, threat model readout meeting
December 6, 2023 Code review readout meeting

March 7, 2024 Delivery of fix review appendix

Trail of Bits 5 Pacman Security Assessment

CONFIDENTIAL

Executive Summary

Engagement Overview

The Open Technology Foundation engaged Trail of Bits to review the security of the
Pacman package manager, as well as its closely-associated package management library
libalpm. Pacman is the official package manager of Arch Linux and is developed by the
Arch team; it is also used in a handful of other Linux distributions, including Manjaro.

A team of two consultants conducted a threat model from November 13th to 17th, for a
total of two engineer weeks; this was followed by a code review by three engineers from
November 20th to December 1st, for a total of five engineer-weeks of effort. Our testing
efforts focused on package signature verification, data integrity during downloads and
upgrades, memory safety, and a new user-based isolation mechanism. With full access to
source code and documentation, we performed static and dynamic testing of Pacman and
libalpm, including fuzzing, using automated and manual processes. The audit scope
excluded the parts of the Pacman ecosystem used exclusively for building packages, such
as makepkg.

Observations and Impact

Overall, Pacman is well-designed, comprehensively-documented, and robust against
common application security issues. The code review portion of the engagement revealed
several issues ranging from low to undetermined severity, and while the threat model
revealed some plausible threat scenarios, these generally require the confluence of several
independent factors which set a relatively high bar for an attacker to achieve, such as
compromising a mirror, obtaining a signing key, intercepting a user’s connection under
certain configurations, and so on.

That said, certain defense-in-depth measures can be implemented to improve the
resilience of Pacman and the Arch Linux distribution and signing infrastructure, even
against cases where an attacker already has a partial foothold. Based on the threat model
and code review results, three major areas of improvement stand out:

e AsPacman is written in C, even security-conscious developers run a relatively high
risk of accidentally introducing memory safety issues — we discovered several
during the audit, although ultimately none proved especially serious
(TOB-PACMAN-1, TOB-PACMAN-4, TOB-PACMAN-9). We recommend employing the
use of static and dynamic analyses, including fuzz tests, to uncover additional
potential cases of memory corruption and leaks before attackers do.

e Pacman’s signing infrastructure is robust against maintenance issues such as keys
being lost (not stolen), signers becoming inactive or incapacitated, and so on.
However, due to a lack of documented incident response procedures, the Arch
Linux team may be ill-equipped to promptly respond to a security incident involving

Trail of Bits 6 Pacman Security Assessment
CONFIDENTIAL

theft or malicious use of key materials. Additionally, a lack of clear auditing
guidelines and trust requirements for signers increases the likelihood that package
signing keys could be used maliciously. As Arch Linux continues to grow as an
organization, it is critical that security-related processes, guidelines, and
requirements are clearly and precisely documented to ensure consistency and
prompt response to security incidents.

Pacman can verify database signatures, but Arch Linux's official databases are not
signed and Pacman does not require databases to be signed by default. Combined
with the fact that Pacman allows the use of plaintext HTTP package mirrors, users
with such a configuration could be served malicious database files, which could
serve old and vulnerable versions of packages. This issue is known to the Arch Linux
team, and work is currently underway to rectify it.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the Arch Linux team take the following steps:

Remediate the code review findings disclosed in this report. These findings
should be addressed as part of a direct remediation or as part of any refactor that
may occur when addressing other recommendations.

Create a long-term plan for implementing the strategic recommendations in
the Threat Model section of this report. These findings should be addressed as
part of a direct remediation or as part of any refactor that may occur when
addressing other recommendations.

Clarify the intended use and safety guarantees of the --root argument. This
argument specifies which directory should be used by Pacman as the root directory.
However, it is not guaranteed that files and directories outside of the root directory
will remain untouched (for example, if there is a maliciously placed symlink inside of
the root directory). Pacman’s manpage entry states that the argument should not be
used as “a way to install software into /usr/local instead of /usr” or “for
performing operations on a mounted guest system”. However, Pacman
documentation does not state what this argument should be used for, and does not
give any information about the argument’s (lack of) safety guarantees.

Implement security-focused static analysis, dynamic analysis, and fuzz tests.
These should be run against each new Pacman version prior to release to minimize
the likelihood that ongoing code changes introduce memory corruption issues.

Trail of Bits 7 Pacman Security Assessment
CONFIDENTIAL

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN

Severity Count Category Count
High 0 Data Validation 5
Medium 0 Denial of Service 1
Low 1 Undefined Behavior 3
Informational 5

Undetermined 3

Trail of Bits 8 Pacman Security Assessment

CONFIDENTIAL

Project Goals

The engagement was scoped to provide a security assessment of the Pacman package
manager. Specifically, we sought to answer the following non-exhaustive list of questions:

Is there any way to bypass Pacman'’s package signature validation?

Is it possible to break out of the SandboxUser's filesystem context implemented in
MR 23?

Does the package consistency checking included in MR 96 have any security issues?
Is Pacman vulnerable to any form of memory corruption?

Can an attacker with control over database contents (which are unsigned by default
and may be accessed over plaintext HTTP) cause Pacman to exhibit malicious
behavior?

o In particular, can a malicious database silently downgrade a package to a
known-vulnerable version, install a vulnerable package, or uninstall a
package providing security measures?

Can a malformed package, or malformed metadata, cause Pacman to bring the
system into an inconsistent state?

Are Pacman'’s defaults conducive to secure operation by ordinary users?
Does Pacman call out to third-party programs or libraries in unsafe ways?
Does Pacman'’s current test suite appropriately cover security related concerns?

Is Arch Linux’s package signing infrastructure robust against failures and resilient to
compromise, including malicious insiders?

Are Arch Linux’s official package repositories reasonably well protected against the
unexpected introduction of malicious code or metadata?

Trail of Bits 9 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

Project Targets

The engagement involved a review and testing of the target listed below, including two
as-yet-unmerged pull requests.

Pacman

Repository https://gitlab.archlinux.org/pacman/pacman/
Version 18e49f2c97f0e33a645f364ed9de8e3dabc36d41
Type C binary application

Platform Linux

Merge Request 23: Add SandboxUserConfiguration
URL https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23

Merge Request 96: Check package consistency when installing

URL https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

Trail of Bits 10 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/96

Project Coverage
This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

e Alightweight threat model of Pacman and the portion of its infrastructure related to
package signing and distribution.

e Non-exhaustive manual review of the Pacman codebase as well as two
security-relevant pull requests pending acceptance, with a focus on code paths
pertaining to security-critical functionality highlighted in the initial threat model

e Static analysis of the Pacman codebase and manual triage of results
e Dynamic analysis to identify instances of memory corruption and leaks
e Fuzzing to identify inputs that could cause unexpected behavior at runtime

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e Code of various dependencies used by Pacman like libarchive, gpgme etc.

e Although we included signing/packaging infrastructure security controls in the
threat model, we did not have access to review their implementation during the
code review.

Trail of Bits 11 Pacman Security Assessment
CONFIDENTIAL

Threat Model

As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from
Mozilla's “Rapid Risk Assessment" methodology and the National Institute of Standards and
Technology's (NIST) guidance on data-centric threat modeling (NIST 800-154). The results of
the lightweight threat model are noted in the subsections below.

Data Types

The target application makes use of the following data formats:

e Tar files (.tar), usually compressed (.zst, .gz, or .xz): Pacman package files
e Bash scripts: PKGBUILD, INSTALL files
e INI configuration files: hooks, configuration files (e.g. pacman.conf)
e Plain text: PKGINFO, BUILDINFO, database and file-list files
e PGP keys
Data Flow

Pacman is the default package manager for Arch Linux, maintained officially by the Arch
Linux development team.

Pacman retrieves packages from one or more repositories, which can either be located on
the local host's filesystem, or accessed over the network via any protocol supported by
libcurl, which Pacman uses internally. Packages can also be directly installed from the
filesystem without being associated with a repository.

In a typical use case, users download the vast majority of their packages pre-built from
HTTP or HTTPS mirrors of the remote Arch Linux official repositories. A small number of
unofficial packages, such as those from the Arch User Repository, may be built and
installed either directly as a manually-built package file on the local filesystem, or from a
repository hosted on the local filesystem.

When a package is installed, Pacman verifies its signature using an internal Pacman Keyring,
with root-of-trust derived from a unique System Master Key which is generated upon system
installation, and used to sign the set of Main Signing Keys imported into the system-local
Pacman keyring. These Main Signing Keys, of which there are only a small number, are used
by the Arch Linux developers to sign Packaging Keys, with which package maintainers sign
their packages. Each main signing key has an associated Revocation Key, held in the
possession of a different trusted signer, which can be used to revoke it in the event of a
compromise. Those keys, along with the names of developers they belong to, are listed on
the https://archlinux.org/master-keys/ website.

Data for keys stored in Pacman'’s internal keyring is kept-up-to-date via the WKD Sync
Service, which runs weekly on Arch Linux and syncs with a distributed Web Key Directory. The

Trail of Bits 12 Pacman Security Assessment
CONFIDENTIAL

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://archlinux.org/master-keys/

sync service can only update metadata (such as expiration dates) for existing stored keys; it
cannot alter whether or not a given key is trusted.

Maintainers generally use makepkg to generate pacman packages from application/library
sources. The build scripts for Arch Linux’'s official packages are hosted on a dedicated
GitLab account, https://gitlab.archlinux.org/, with login handled by an Arch-managed
Keycloak SSO instance. Most official packages are built on a single, high-capacity Main Build
Server administered by dedicated DevOps members of the Arch Linux team and accessible
via SSH; however, individual maintainers may build and sign packages on other machines.
Packagers are currently strongly encouraged, although not strictly required, to retain
signing keys only on hardware keys (as opposed to on their local filesystem).

All official Arch Linux packages are currently signed, and by default, Pacman requires
packages from remote repositories to have a valid signature trusted by Arch’s main signing
keys. Package installation transactions may be preceded and/or followed by hooks, which
can invoke arbitrary commands in response to the presence of specific packages in a
transaction. Packages, along with detached signatures, are cached in a Package Cache
directory (/var/cache/pacman/pkg) on the local filesystem after installation.

Below, we depict known connections between system components of the
package-consumption side of Pacman, as integrated in Arch Linux. These diagrams are
intended to convey our understanding of the system as a whole. Further details will be
discussed in the Components and Trust Zones and Trust Zone Connections report
subsections. The dotted lines indicate trust boundaries separating zones.

Trail of Bits 13 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/

Package | | Package

Local Network 1 1 Remote Network | r Packaging Root-of-Trust |
I]
Local Network Repository } Arch Linux | 1 h |
I Packaging Main Build ’ !
I Il T T 1 1
r ‘ Host Machine | | : Host SeJrver .
" 1 1 I
Local 1 { T i
Filesystem | ' 1 y Vo ~—{ Makepkg :
Hooks Repository | 1 | } | Remote o :
1

I b erggziig;y " _{ Packaging Keys :
Pacman v i LT y)

I

1

_ Cache <= Manager | ! |)
3 ' | Web Key Main Signing | | Keycloak | !

! :
System pacman | |11 | Drectoy Keys sso | !
Master Key [| Keyring ' ! f !
] | .
4L ! | | Revocation !
WKD Sync | , ! | Keys |
Service T !

Figure 1: The data flow of packages and their signing data from Arch Linux’s root-of-trust to the
host machine on which Pacman runs.

Components and Trust Zones

The following table describes the components that make up the Pacman package
management system, as well as the external dependencies on which they rely. These
system elements are further classified into trust zones—logical clusters of shared
functionality and criticality, between which the system enforces (or should enforce)
interstitial controls and access policies.

Components marked by asterisks (*) are considered out of scope for the assessment. We
explored the implications of threats involving out-of-scope components that directly affect
in-scope components, but we did not consider threats to out-of-scope components
themselves.

Component Description
Host Machine The host on which Pacman is used to manage packages.

Pacman Package Pacman is a package management tool that tracks installed packages on a
Manager Linux system, including support for dependency resolution/retrieval,
package groups, install/uninstall scripts, and pre/post-install hooks. It also

Trail of Bits 14 Pacman Security Assessment
CONFIDENTIAL

Local Filesystem
Repository

Package Cache

Pacman Keyring

System Master
Key

WKD Sync
Service

Hooks

Local Network

Local Network
Repository

Remote Network

Remote Network
Repository

Trail of Bits
CONFIDENTIAL

contains utilities such as makepkg, used to create packages which can be
installed by Pacman.

A repository residing on the local filesystem. Repositories provide a listing
of packages which can be fetched, installed, or upgraded. The package
listing is managed by the repository maintainer(s). Packages can be signed
or unsigned.

A directory populated with previously-installed packages. Cached packages
are used to rapidly reinstall a previously installed package. Any signatures
contained within packages are also stored alongside and validated for each
cached package item.

A keyring containing signing keys for all packages installed on the system.
Keys within the keyring are only considered trusted if they are signed by an
Arch Linux packaging key (which is in turn signed by a main signing key).

The root of trust for Pacman'’s signature validation on any given installation.
Master keys are generated at first Pacman run (and so on first boot of Arch
Linux), are unique to each Arch Linux install, and are used by the host
machine to trust the Arch Linux main signing keys.

A GPG wrapper service on Arch Linux that runs weekly to sync updates (e.g.
expiry extensions) to keys in the Pacman keyring, pulled from a Web Key
Directory (WKD). The WKD service can add previously-unknown signatures
to the keyring, but cannot make Pacman trust those signatures.

Pre- and post-install hooks which enable running commands just before or
after a Pacman transaction (e.g., to rebuild a new kernel image after
Pacman installs a new kernel version).

The components which share a local network with the Host Machine.

A repository residing. Repositories provide a listing of packages which can
be fetched, installed, or upgraded. The package listing is managed by the
repository maintainer(s). Packages can be signed or unsigned.

The components which live outside of the Local Network trust zone, e.g.
public-facing external network components.

A repository residing on a remote network host. Repositories provide a
listing of packages which can be fetched, installed, or upgraded. The

15 Pacman Security Assessment

Web Key
Directory (WKD)

Arch Linux
GitLab (*)

Packaging
Infrastructure

Main Build
Server (*)

Packager Host

Packaging Keys

Makepkg (*)

Packaging
Root-of-Trust

Main Signing
Keys

Revocation Keys

package listing is managed by the repository maintainer(s). Packages can be
signed or unsigned.

GnuPG's standard system for key discovery, which maps public keys to
email addresses.

The GitLab account hosting the source code for official Pacman packages.

The machines (and their operators) that build and sign Pacman packages.

The dedicated, high-capacity machine that the Arch Linux team uses to
build the majority of its official packages.

A host operated by a Packager, used to build and sign packages.

A key used by package maintainers to sign packages. Each trusted
maintainer is issued a packaging key signed by a quorum of main signing
keys.

The toolset used to build Pacman packages.

The components which are used to facilitate administration of an operating
system’s primary mirrors and managing their authorized package signers.

The root of trust for Arch Linux's signing infrastructure, which can sign new
packaging keys as well as packages themselves. Currently, only five main
signing keys exist.

Each Main Signing Key has a single associated Revocation Key used to
revoke the signing key in the event of compromise. Each signing key's
Revocation Key is held by another signing key owner.

Arch Linux The individuals who administer Arch Linux's Keycloak SSO instance, GitLab
DevOps account, etc.
Trail of Bits 16 Pacman Security Assessment

CONFIDENTIAL

Trust Zone Connections

At a design level, trust zones are delineated by the security controls that enforce the
differing levels of trust within each zone. Therefore, it is necessary to ensure that data
cannot move between trust zones without first satisfying the intended trust requirements
of its destination. We enumerate such connections between trust zones below.

Originating Destination Data Description Connection Auth Type
Zone Zone Type
Host Machine Host Machine All operations Filesystem File
performed by pacman Privileges,
which leverage
components in the GNUpg
same zone, largely rely signature
on cryptographic validation
verification (e.g. signed
packages, packager key
authorization).
The artifacts written by
pacman are done soin
root-user execution
context, with file
permissions blocking
Remote Host Machine The host's WKD Sync HTTPS None
Network Service pulls updated
key information from a
Web Key Directory into
the Pacman Keyring.
Remote Host Machine The host installs a libcurl GNUpg
Network, package from a Local or supported signature
Local Network Remote Network protocols (e.g. validation,
Repository. HTTP, HTTPS,

FTP, ..) libcurl
supported
protocols
(e.g. TLS)

Remote Local Third-party package Varies; likely Varies or
Network Network sources pulled from the HTTP/S None

Trail of Bits
CONFIDENTIAL

Internet are

17

Pacman Security Assessment

Remote
Network

Packaging
Root-of-Trust

Packaging
Root-of-Trust

Trail of Bits
CONFIDENTIAL

Packaging
Infrastructure

Packaging
Infrastructure

Arch Linux
GitLab

downloaded to, and
built on, the local
network; the resulting
packages are placed in
a Local Network
Repository.

Package sources hosted
on the Arch Linux
GitLab are downloaded
to, and built on, the
Main Build Server or a
Packager Host.

A quorum of Main
Signing Key holders
signs a new Packaging
Key, or issues
revocations for an
existing one.

An Arch Linux
administrator logs into
GitLab through
Keycloak SSO.

18

HTTPS

N/A

HTTPS

SSH

GNUpg
signature
verification

OAuth

Pacman Security Assessment

Threat Actors

When conducting a threat model, we define the types of actors that could threaten the
security of the system. We also define other users of the system who may be impacted by,
or induced to undertake, an attack. For example, in a confused deputy attack such as
cross-site request forgery, a normal user who is induced by a third party to take a malicious
action against the system would be both the victim and the direct attacker. Establishing the
types of actors that could threaten the system is useful in determining which protections, if
any, are necessary to mitigate or remediate vulnerabilities. We will refer to these actors in
descriptions of the security findings that we uncovered through the threat modeling

exercise.

Actor Description

End Users Actors representing users of Pacman and consumers of its
packages and repositories. They operate in the Host Machine zone,
and may have influence over the Local Network zone and its
repositories.

Local User A low-privileged user on the Host Machine, e.g. non-admin,
non-root. They cannot execute sensitive pacman operations, as
they require root-access.

Local Root The root user on the Host Machine, with privileges to perform any
operations they desire. Pacman requires a Local User to elevate to
Local Root to install or update packages.

Operators Privileged actors with the responsibility of operating Packaging
Infrastructure and Packaging Root-of-Trust components.

Repository An individual with control over a Pacman repository/mirror. They

Administrator

DevOps Administrator

Packager

Trusted Signer

Trail of Bits
CONFIDENTIAL

may operate a local machine, local network, or remote repository.

An individual with control over Arch Linux’s DevOps infrastructure,
including the Arch Linux GitLab account and Keycloak SSO instance.

An individual in possession of a Packaging Key which was signed
and approved by a Trusted Signer

An individual in possession of a Master Signing Key, a single keypair
used in a threshold signature scheme (TSS) which performs
sensitive operations such as approving a new Packaging Key.

19 Pacman Security Assessment

Trusted Signers, in quorum, act as a root of trust for pacman
repository management.

Attacker An attacker positioned either within or external to any of the trust
zones previously described.

Internal Attacker An Internal Attacker is an attacker who has transited one or more
trust boundaries. Such an attacker may be an existing actor role in
the system or an External Attacker who has successfully transited a
trust boundary into the system.

External Attacker An External Attacker is an attacker who is external to the cluster
and is unauthenticated, such as an attacker with control over
external services.

Trail of Bits 20 Pacman Security Assessment
CONFIDENTIAL

Threat Scenarios

The following table describes possible threat scenarios given the design, architecture, and
risk profile of the Pacman package manager.

Scenario

An operating system provides a default mirror
list leveraging insecure protocols. Developers of
an operating system such as Arch Linux may
generate a list of repository sources which leverage
insecure protocols (e.g. HTTP, FTP). Due to pacman’s
lack of protocol restrictions, its underlying libcurl
dependency will communicate over the insecure
protocol.

If a Local User or Local Root actor uses this insecure
protocol to fetch packages from a Local Network or
Remote Repository, it may expose them to
man-in-the-middle attacks. Although such an attack
may not be problematic for signed packages,
unsigned packages may be substituted with
maliciously crafted packages by an Attacker.

An operating system which leverages pacman
does not enforce signed packages by default.
Arch Linux by default requires all packages to be

Actor(s)

e Repository
Administrator

e Trusted
Signer

e Attacker

e Repository
Administrator

signed to be installed, verifying they have been e Packager
approved. In the event a Linux distribution does not
configure pacman to require signatures, this may e Trusted
introduce risk, compounding on the threat scenario Signer
mentioned in the previous row of this table.

o Attacker

Unsigned packages may be modified or indicative of
a lack of approval process. They may be subject to
modification in-flight through a man-in-the-middle
attack that may put users at risk.

The Package Cache containing a copy of previously
unsigned installations may also be modified if it is
improperly secured. By default, Arch Linux saves
Package Cache items with special privileges that
should disallow any user role except Local Root to
modify them, mitigating this risk.

Trail of Bits 21
CONFIDENTIAL

Component(s)

e Pacman
Package
Manager

e Pacman
Package
Manager

Pacman Security Assessment

An environment variable affects Pacman
Package Manager’s libcurl dependency. For
instance, Pacman redirects its HTTP connections
through the proxy defined in the http_proxy
environment variable. If an attacker injects an
environment variable into Pacman’s runtime
environment — a difficult prospect, given that it
runs as root during installs — he may be able to
cause Pacman to exhibit exploitable or undesirable
behavior.

An Attacker attempts a substitution attack,
bumping versions on a popular package through
a compromised Local Network Repository or
Remote Repository. Pacman will always install the
latest version of a package across all repositories it
has access to. As such, if a user has both local and
remote repositories enabled, an attacker who is
able to introduce an identically-named,
higher-versioned package into one of the remote
repositories can easily induce the user to install his
version of the package. Similar attacks may also be
possible via DNS confusion, e.g. if an attacker
registers a domain that shadows a local-network
domain name. See this GitHub blog post on
substitution attacks against NPM.

An attacker compromises a Packaging Key and
produces different, but valid, signatures for a
package to introduce malicious changes. In this
case, Pacman would install the new package version
normally, and the user would be entirely unaware.
Currently, there is no way to enable a warning when
a package's signature changes.

A Packaging Key or Packager is compromised,
requiring revocation of their Packaging Key. Due
to a lack of documented procedures for revocation,
response by Trusted Signers may be delayed, giving
the attacker more time to cause damage.

Trail of Bits 22
CONFIDENTIAL

e Local Root

e Repository
Administrator

e External
Attacker

e Packager

e Internal
Attacker

e Packager

e Trusted
Signer

e Pacman
Package
Manager

e Pacman
Package
Manager

e Local Network
Repository

e Remote
Network
Repository

e Pacman
Package
Manager

e Packaging
Keys

e Packaging
Keys

Pacman Security Assessment

https://github.blog/2021-02-12-avoiding-npm-substitution-attacks/

A Trusted Signer's key is compromised, requiring
incident response. Due to a lack of documented
procedures for revocation, response by the Trusted
Signer holding the compromised key's revocation
key may be delayed, giving the attacker more time
to cause damage.

The (unsigned) Pacman database used to index
packages may be modified by an Attacker. The
database used by Pacman is not signed. The
database is used as an index for packages on the
system.

Although most of the data used by Pacman is
derived from signed packages on Arch Linux, the
database is used to determine depends/replace
directives when installing a package. This is done
without verification that the depends/replace data
taken from package metadata has not been
tampered with.

As such, an Attacker with access to the Pacman
database may replace depends/replace directives
within the database for a given package, to trigger a
deletion or replace-with-empty operation of an
existing package on the user's system.

Vulnerable or malicious packages are assigned a
package group with a name identical to a
popular, existing package. Currently, Pacman
always resolves such a conflict in favor of the group,
with no way to override this behavior. As such,
users could be made to unwittingly install an
arbitrary package or set of packages in place of a
common package.

A naive user sets overly-permissive file
permissions on their keyring, config files, or
hooks. An attacker who achieves local filesystem
access — e.g., by compromising a low-privileged

Trail of Bits 23
CONFIDENTIAL

e Trusted
Signer

e End User

e Internal
Attacker

e Packager

e Packager

e End User

e End User

e Main Signing
Keys

e Revocation
Keys

e Pacman
Package
Manager

e Local Network
Repository

e Remote
Network
Repository

e Pacman
Package
Manager

e | ocal Network
Repository

e Remote
Network
Repository

e Host Machine

Pacman Security Assessment

service — could inject malicious settings,
commands, or additional trusted keys in order to
perform privilege escalation.

A revocation certificate or signing key (e.g.
Package Key, Trusted Signer key) is lost or
corrupted. In addition, since there are no standard
procedures for regular checks of keys or their
backup media after initial creation, it is possible that
keys could be permanently lost. In particular, since
revocation keys are long-lived and very rarely used,
they may become inaccessible (e.g. through
corrupted media) long before this fact is discovered,
only to be realized too late when the key is sorely
needed.

An attacker compromises a mirror of Arch Linux
official packages, or intercepts a user’s non-TLS
connection to a repository, and injects a
malicious version of a package. In this case,
Pacman would refuse to install the package, as it
requires signatures from remote repositories by
default.

Trail of Bits 24
CONFIDENTIAL

e Trusted
Signer

e Packager

e End User

e Repository
Administrator

e Internal
Attacker

e Revocation
Keys

e Main Signing
Keys

e Pacman
Package
Manager

e Local Network
Repository

e Remote
Network
Repository

Pacman Security Assessment

Recommendations

Trail of Bits recommends that the Arch Linux team implement the following
recommendations to mitigate the threat scenarios described above:

1.

4.

Set Pacman to reject non-TLS mirrors by default. Since databases are not
currently signed, an attacker who can intercept an unauthenticated connection
between a user and a repository could modify their contents in transit. A new
configuration value such as “AllowlnsecureMirrors” can be added to pacman.conf to
permit the use of non-TLS mirrors on a case-by-case basis if necessary for
backwards-compatibility.

o Consider also allowing users to set a minimum TLS version in
pacman.conf, defaulting to at least TLS 1.2 (disabling specific ciphersuites
supported in 1.2 that are known to be weak) or, ideally, TLS 1.3. Otherwise,
HTTPS downgrade attacks may be possible against TLS-enabled mirrors that
support older, insecure TLS versions.

o Update the official Pacman mirror lists to exclude non-TLS mirrors, and
consider modifying the reflector mirror list ranking tool to take TLS
settings into account (i.e. ranking mirrors with stricter settings higher).

Transition to signed databases and require them by default. Currently, Pacman
gets packages’ depends/replaces lists from the database. With databases being
unsigned, an attacker with the ability to modify them could induce a user to install
or remove arbitrary packages.

o A patchis currently in progress that would check package metadata as listed
in the database against the metadata contained within the actual signed
package to be installed, which partially mitigates this issue.

Warn users (or give them the option to be warned) when a package’s signature
changes during an upgrade, even if the signature is valid. This will provide a
defense-in-depth measure against cases where an attacker gains possession of a
valid signing key and signs a package not previously signed with that key.

o Consider introducing a setting into pacman.conf that would toggle these
warnings between “off”, “print only”, and “pause upgrade and interactively
ask for confirmation to continue” — the latter case being suitable for
especially cautious users. Depending on how often packages' signing keys
change in legitimate cases, the default of this setting could be either “print
only” (if rare) or “off” (if common).

Provide an interactive resolution prompt in cases where a package and a
group both exist with the same name. Currently, Pacman considers group names

Trail of Bits 25 Pacman Security Assessment
CONFIDENTIAL

https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF

to “shadow” identically-named packages; as such, an attacker who can tag a
malicious or vulnerable package as belonging to a group with the same name as a
common package — for instance, by manipulating an unsigned database — can
cause users to unwittingly install the package of his choice. In the event of a conflict,
the user should be prompted to make an explicit selection (in the same manner as
“provides” induces).

5. Have Pacman refuse to load its keyring, config files, or hooks if they are
writable by users other than root. Analogous to SSH's permissions checks on the
~/ .ssh directory, this prevents users from unknowingly directing Pacman (which is
likely running as root) to use a keyring, configuration, or hook that a lower-privileged
user or service could maliciously modify, which could permit privilege escalation.

6. Establish a detailed, written incident response plan that defines how to
respond to high-severity threat scenarios, especially the following. The plan
should detail precisely who is responsible for threat response, and the exact steps
they should follow to mitigate the threat. Having such guidance in place ensures
that there is no ambiguity about how to handle a security incident when it actually
happens, ensuring the fastest and most thorough response possible.

o Compromise of a Main Signer Key.
o Compromise of a Packager Key.

o Compromise of a DevOps-managed property such as the Arch Linux Gitlab
account, Keycloak SSO instance, etc.

7. Establish procedures for regularly validating Trusted Signers’ Main Signer Key
and Revocation Key backups over time, to ensure that they remain usable and
readily accessible. In addition, provide detailed guidance on how operators should
configure and use cold storage backups, ensuring redundancy in case their primary
keypair is corrupted.

o Test not only the accessibility and integrity of the backup media, but also the
viability of the keys in question: for instance, import revocation keys into a
test keyring on a regular basis to ensure that they do indeed revoke the
expected signing keys.

8. Establish a written list of procedures and requirements for onboarding a new
Trusted Signer. Currently, any potential new Trusted Signer must be well-known to
the Arch Linux team, and a long-term participant within the Arch ecosystem,
meaning that candidates are already extensively vetted. Formalizing this process
would reduce the likelihood of mistakes or exceptions being made.

Trail of Bits 26 Pacman Security Assessment
CONFIDENTIAL

o Consider verifying trusted signers’ legal IDs. The current onboarding
process, while in effect vetting candidates’ real-world identities quite
extensively, does not require actual verification of their legal IDs. Doing so
would add an additional layer of defense-in-depth and better allow the Arch
team to hold a defecting signer legally accountable if necessary.

9. Establish standards for regular check-ups on Packagers. Currently, Trusted
Signers make a best-effort attempt to identify Packagers who are inactive or are not
fulfilling their duties; however, this is not done systematically or at regular intervals.
To minimize the chance that inactive or irresponsible signers slip through the
cracks.

10. Establish clear security guidelines for Trusted Signers and Packagers, including
how to generate, store, and use key material, how to report a compromise of their
own key material, what to do if a Trusted Signer reports a compromise, and so on.

o Notably, require Packagers to keep key material on hardware keys only.
Currently, this practice is strongly encouraged, but not mandated, and some
Packagers sign using key material on their local filesystems.

11. Consider replacing uses of MD5 with a hashing algorithm with a lower chance
of hash collision, such as BLAKE2. MD5 has a nontrivial chance of collisions, and it
is feasible to intentionally craft a file with a specific MD5 hash. Some .pacsave
backups, which use MD5 hashing to compare files, may not occur in the case of a
hash collision even if the files in question do actually differ. However, performance
or compatibility considerations may prohibit the use of algorithms with lower rates
of hash collision.

Trail of Bits 27 Pacman Security Assessment
CONFIDENTIAL

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration

We used the following tools in the automated testing phase of this project:

Tool Description Policy

scan-build A static analysis tool that can find various issues within Default checks
C/C++ codebases.

libFuzzer An in-process, coverage-guided, evolutionary fuzzing Appendix D
engine. LibFuzzer can automatically generate a set of inputs
that exercise as many code paths in the program as
possible.

Areas of Focus

Our automated testing and verification work focused on the following system properties:
e The program does not access invalid memory addresses.
e The program does not exercise undefined behavior.

Test Results

The results of this focused testing are detailed below.

Fuzzing harnesses. The fuzzing harnesses we developed that exercise a subset of the
program's code.

Property Tool Result

fuzz_string_length - harness that checks one of utility libFuzzer TOB-PACMAN-4
functions that computes the length of a string, omitting
ANSI escape codes

fuzz_wordsplit - harness that checks one of utility libFuzzer Did not find issues
functions that splits a string into multiple words

Trail of Bits 28 Pacman Security Assessment
CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html
https://llvm.org/docs/LibFuzzer.html

fuzz_parseconfigfile - harness that tests the parsing libFuzzer Requires further
of config files. Requires further changes so it is chrooted development (see
and so that the parser doesn't include external files from Appendix D)

the file system.

fuzz_alpm_extract_keyid - harness that tests the libFuzzer TOB-PACMAN-9
extraction of keys from signature data

Trail of Bits 29 Pacman Security Assessment
CONFIDENTIAL

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies

identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category

Arithmetic

Auditing

Authentication /
Access Controls

Complexity
Management

Configuration

Cryptography
and Key
Management

Trail of Bits
CONFIDENTIAL

Summary

Although the code attempts to test the computed
indexes or path lengths, the project does not take
specific measures to ensure arithmetic safety. For
example, we found an instance where an integer
underflow occurred in a length check function.
Additionally, oftentimes the length check values are
computed from hardcoded integer constants, instead of
using the sizeof () operator to compute the length of
the hardcoded string from which the integer constant
length is derived.

Pacman generally preserves standard error from
subprocesses (e.g., hooks), and produces useful, detailed
messages when package operations encounter errors.

Pacman itself does not require authentication or attempt
to authenticate to other services.

Pacman'’s codebase is neatly organized, with discrete
functionality organized into separate files and functions,
accompanied by clear comments and documentation.

Pacman calls out to well-vetted third-party libraries for
complex functionality such as downloads (libcurl) and
signature verification (OpenSSL), and uses those libraries
according to their respective best practices.

Pacman uses OpenSSL for all cryptographic operations.

Arch Linux’s signing infrastructure has built-in resilience
measures such as physical key backups, quorum
requirements, and public oversight. However, no written

Result

Moderate

Satisfactory

Not
Applicable

Strong

Strong

Satisfactory

30 Pacman Security Assessment

Category Summary Result

incident response plans exist. This could increase the
team'’s response time in the event the signing
infrastructure is compromised.

Data Handling While the code generally attempts to verify the data it Moderate
receives, there were certain cases where the performed
checks were insufficient and could cause memory
corruption or undefined behavior.

Documentation Pacman and 1ibalpm are both extensively documented, Strong
including in code comments, documentation, man pages,
and on the Arch Linux wiki.

Maintenance Some issues were discovered in how Arch Linux team Moderate
members maintain the signing infrastructure itself. While
the Arch team occasionally audits package signers on an
informal basis, no formal process has been defined for
how, and how often, such audits should take place. In
addition, revocation key backups are not checked
regularly after they are first generated; if a backup fails,
signers may be unable to revoke a compromised key in a
timely manner.

Memory Safety We uncovered some instances of memory safety issues Weak
and Error where certain parsing routines were able to read
Handling memory out-of-bounds. We recommend fuzzing those

and other code paths regularly to cover more edge cases
and help catch new problems.

Errors are generally handled consistently within the
codebase, though there were cases where allocation
failures were not acted upon apart from logging, though
this could be hard to recover from. Additionally, the code
could benefit from better distinction of status code
return type for its public functions (instead of being an

int type).
Testing and Pacman has substantial test coverage for expected Moderate
Verification functionality, but none that focuses on unexpected

inputs or potentially malicious behavior (e.g. fuzz tests).

Trail of Bits 31 Pacman Security Assessment
CONFIDENTIAL

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Use-after-free vulnerability in the print_packages
function

2 Null pointer dereferences

3 Allocation failures can lead to memory leaks or
null pointer dereferences

4 Buffer overflow read in string_length utility
function

5 Undefined behavior or potential null pointer
dereferences by passing null pointers to functions
requiring non-null arguments

6 Undefined behavior from use of atoi

7 Database parsers fail silently if an option is not
recognized

8 Cache cleaning function may delete the wrong
files

9 Integer underflow in a length check leading to
out-of-bounds read in alpm_extract_keyid

Trail of Bits 32

CONFIDENTIAL

Type

Undefined
Behavior

Denial of Service

Undefined
Behavior

Data Validation

Data Validation

Undefined

Behavior

Data Validation

Data Validation

Data Validation

Severity

Low

Informational

Informational

Undetermined

Undetermined

Informational

Informational

Informational

Undetermined

Pacman Security Assessment

Detailed Findings

1. Use-after-free vulnerability in the print_packages function
Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-PACMAN-1

Target: pacman/src/pacman/util.c

Description

The print_packages function has a use-after-free vulnerability. It first deallocates
memory for the temp variable and then uses that memory in the PRINT_FORMAT_STRING
macro (figure 1.1). This can lead to:

e Potential exploitation of the program if an attacker would be able to allocate and
control the content of the temp variable after it is freed (1) and before it is used (2)
in another thread. Note that the time window for it is very small since the two
operations happen one after another.

e Adouble free which if detected by the allocator, would cause a program crash. The
second free is called in the PRINT_FORMAT_STRING macro.

The severity of this finding is low since the first scenario should not be possible because
Pacman doesn't use multiple threads.

This issue has been found with the scan-build static analyzer.

void print_packages(const alpm_list_t *packages) {

/* %s . size */
if(strstr(temp, "%s")) {
char *size;
pm_asprintf(&size, "%jd", (intmax_t)pkg_get_size(pkg));
string = strreplace(temp, "%s", size);
free(size);
free(temp); // (1) memory pointed by the temp variable is freed
}
/* %u : ourl */
PRINT_FORMAT_STRING(temp, "%u", alpm_pkg_get_url) // (2) use-after-free of temp

Figure 1.1: pacman/src/pacman/util.c#L1258-1267

#define PRINT_FORMAT_STRING(temp, format, func) \

Trail of Bits 33 Pacman Security Assessment
CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L1258-1267

if(strstr(temp, format)) { \
string = strreplace(temp, format, func(pkg)); \
free(temp); \
temp = string; \

P

Figure 1.2: The PRINT_FORMAT_STRING macro definition
This issue can also be detected with tools such as Valgrind (figure 1.3) or AddressSanitizer.

valgrind ./pacman -S --print --print-format '%s' valgrind

==2084== Memcheck, a memory error detector

==2084== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==2084== Using Valgrind-3.21.0 and LibVEX; rerun with -h for copyright info
==2084== Command: ./pacman -S --print --print-format %s valgrind

==2084==

==2084== Invalid read of size 1

==2084== at 0x484D11D: strstr (vg_replace_strmem.c:1792)
==2084== by ©x126206B: print_packages (util.c:1267)
==2084== by ©x11F9DA: sync_prepare_execute (sync.c:817)
==2084== by 0x11F550: sync_trans (sync.c:728)

==2084== by ©x11FF72: pacman_sync (sync.c:965)

==2084== by ©x11B5EB: main (pacman.c:1259)

==2084== Address 0x65e61d0 is O bytes inside a block of size 3 free'd
==2084== at 0x484412F: free (vg_replace_malloc.c:974)
==2084== by ©x1261F2: print_packages (util.c:1264)
==2084== by 0x11F9DA: sync_prepare_execute (sync.c:817)
==2084== by ©x11F550: sync_trans (sync.c:728)

==2084== by ©x11FF72: pacman_sync (sync.c:965)

==2084== by ©x11B5EB: main (pacman.c:1259)

==2084== Block was alloc'd at

==2084== at 0x4841848: malloc (vg_replace_malloc.c:431)
==2084== by ©x4A183DE: strdup (strdup.c:42)

==2084== by ©x125ACB: print_packages (util.c:1198)
==2084== by ©x11F9DA: sync_prepare_execute (sync.c:817)
==2084== by 0x11F550: sync_trans (sync.c:728)

==2084== by 6x11FF72: pacman_sync (sync.c:965)

==2084== by 0x11B5EB: main (pacman.c:1259)

==2084== ERROR SUMMARY: 50 errors from 40 contexts (suppressed: @ from @)

Figure 1.3: Detecting the bug with Valgrind

Exploit Scenario

Pacman starts using multiple threads and uses the print_packages function in one
thread and performs an allocation of a similar size to the freed temp variable in another
thread with attacker-controlled content. The attacker leverages this fact to exploit the
program by manipulating its heap memory through the vulnerable code path.

Trail of Bits 34 Pacman Security Assessment
CONFIDENTIAL

Recommendations

Short term, add an assignment of temp = string; after the temp variable is freed in the
vulnerable code path in the print_packages function. This will prevent the use-after-free
issue.

Long term, regularly scan the code with static analyzers like scan-build.

Trail of Bits 35 Pacman Security Assessment
CONFIDENTIAL

2. Null pointer dereferences

Severity: Informational Difficulty: Low
Type: Denial of Service Finding ID: TOB-PACMAN-2
Target:

e pacman/src/pacman/callback.c:656-660
e pacman/lib/libalpm/util.c:469-481

Description

The cb_progress function first checks if a pkgname is a null pointer in a ternary operator (1)
and then may use that pkgname in order to format a string in (2) or (3) (figure 2.1). This
leads to a crash if the pkgname is a null pointer.

The severity of this finding is informational since if the cb_progress function would be
called with a null pointer, the program crash would be evident for the program users and
developers.

void cb_progress(void *ctx, alpm_progress_t event, const char *pkgname,
int percent, size_t howmany, size_t current) {

len = strlen(opr) + ((pkgname) ? strlen(pkgname) : 0) + 2; /1 <--- (1)
wcstr = calloc(len, sizeof(wchar_t));
/* print our strings to the alloc'ed memory */
#if defined(HAVE_SWPRINTF)
wclen = swprintf(wcstr, len, L"%s %s", opr, pkgname); /1 <--- (2)
#else
/* because the format string was simple, we can easily do this without
* using swprintf, although it is probably not as safe/fast. The max
* chars we can copy is decremented each time by subtracting the length
* of the already printed/copied wide char string. */
wclen = mbstowcs(wcstr, opr, len);
wclen += mbstowcs(wcstr + wclen, " ", len - wclen);
wclen += mbstowcs(wcstr + wclen, pkgname, len - wclen); /] <--- (3)
#endif

Figure 2.1: pacman/src/pacman/callback.c#L656-660

An additional case of null pointer dereference is present in the
_alpm_chroot_write_to_child() function, if the out_cb argument is null.

Trail of Bits 36 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L656-660

typedef ssize_t (*_alpm_cb_io)(void *buf, ssize_t len, void *ctx);

/7 1...]

static int _alpm_chroot_write_to_child(alpm_handle_t *handle, int fd,
char *buf, ssize_t *buf_size, ssize_t buf_limit,
_alpm_cb_io out_cb, void *cb_ctx)

{
ssize_t nwrite;
if(*buf_size == 0) {
/* empty buffer, ask the callback for more */
if((*buf_size = out_cb(buf, buf_limit, cb_ctx)) == 0) {
/* no more to write, close the pipe */
return -1;
}
}
Figure 2.2: pacman/lib/libalpm/util.c#L469-481
Recommendations

Short term, fix the potential null pointer dereferences in the cb_progress and
_alpm_chroot_write_to_child functions.

Long term, use static analysis tools to detect cases where pointers are dereferenced
without a preceding null check.

Trail of Bits 37 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/util.c#L469-481

3. Allocation failures can lead to memory leaks or null pointer dereferences

Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-PACMAN-3
Target:

e src/pacman/conf.c
e PR 96: lib/libalpm/alpm_list.c
e lib/libalpm/be_sync.c

Description
There are a few code paths where allocation failures can lead to further memory leaks or
null pointer dereferences. Those are:

e |Ifthe strdup(path) allocation fails in the setdefaults function (1 and 2) (figure
3.1), then the memory pointed by rootdir (2) would be leaked. This is because the
SETDEFAULT macro would enter its error path and return -1 (3), not freeing the
previously allocated memory.

e Thealpm_list_equal_ignore_order function added in PR 96 fails to check that
the calloc function returns a non-null value (figure 3.2). If calloc were to return
NULL, this would lead to a null pointer dereference later on in the function (line 534).

e In_alpm_validate_filename, the strlen(filename) can be called with a null
pointer if the READ_AND_STORE (pkg->filename) execution fails to allocate
memory through the STRDUP macro use (figure 3.3).

The severity of this finding is informational since if an allocation fails, the program would
likely stop functioning properly as it would fail to allocate any more memory anyway.

The first part of this issue (pertaining to conf . c, rather than alpm_1list.c) has been
found with the scan-build static analyzer.

int setdefaults(config_t *c) {
alpm_list_t *i;

#define SETDEFAULT(opt, val) \
if(lopt) { \
opt = val; \
if(lopt) { return -1; } \ /1 (3)
}
if(c->rootdir) {
char* rootdir = strdup(c->rootdir); // (2)
Trail of Bits 38 Pacman Security Assessment

CONFIDENTIAL

https://clang-analyzer.llvm.org/scan-build.html

char path[PATH_MAX];

if(!c->dbpath) {
snprintf(path, PATH_MAX, "%s/%s", rootdir, &DBPATH[1]);
SETDEFAULT (c->dbpath, strdup(path)); /7 (1)

}

if(!c->logfile) ¢
snprintf(path, PATH_MAX, "%s/%s", rootdir, &LOGFILE[1]);
SETDEFAULT(c->logfile, strdup(path)); /7 (1)

Figure 3.1: pacman/src/pacman/conf.c#L1139-1153

511 int SYMEXPORT alpm_list_equal_ignore_order(const alpm_list_t *left,

512 const alpm_list_t *right, alpm_list_fn_cmp fn)
513 {

514 const alpm_list_t *1 = left;

515 const alpm_list_t *r = right;

516 int *matched;

517

518 if((1 == NULL) != (r == NULL)) {

519 return 0;

520 }

521

522 if(alpm_list_count(1l) !'= alpm_list_count(r)) {

523 return 0;

524 }

525

526 matched = calloc(alpm_list_count(right), sizeof(int));
527

528 for(l = left; 1; 1 = 1->next) {

529 int found = 0;

530 int n = 0;

531

532 for(r = right; r; r = r->next, n++) {

533 /* make sure we don't match the same value twice */
534 if(matched[n]) {

535 continue;

536 }

Figure 3.2: PR 96: lib/libalpm/alpm_list.c#L511-536

#define READ_AND_STORE(f) do { \
READ_NEXT(); \
STRDUP(f, line, goto error); \
} while(9)

#define STRDUP(r, s, action) do { \
if(s != NULL) { \
r = strdup(s); \
if(r == NULL) { \

Trail of Bits 39 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1139-1153
https://gitlab.archlinux.org/pacman/pacman/-/blob/06ca06cf3560e8b0f0e76713d7829277d31e7856/lib/libalpm/alpm_list.c#L511-L536

_alpm_alloc_fail(strlen(s)); \

action; \
PR
else { r = NULL; } } \
while(0)

READ_AND_STORE (pkg->filename) ;
if(_alpm_validate_filename(db, pkg->name, pkg->filename) < 0) { ... }

Figure 3.3: pacman/lib/libalpm/be_sync.c#L591-595

Recommendations
Short term, fix the memory leaks or null pointer dereferences as detailed in this finding.

Long term, regularly scan the code with static analyzers like scan-build.

Trail of Bits 40 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_sync.c#L591-595

4. Buffer overflow read in string_length utility function
Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-PACMAN-4

Target: src/pacman/util.c

Description

The string_length utility function (figure 4.1) skips ANSI color codes when computing the
length. When a string includes the "\033" byte that starts the ANSI color code sequence but
does not have the "m" character which ends it, the function will read memory past the end
of the string, causing a buffer overflow read.

This can lead to a program crash or other issues, depending on how the function is used.

static size_t string_length(const char *s) {
int len;
wchar_t *wcstr;

if('s || s[@] == "\@"') {
return 0;

}

if(strstr(s, "\0833")) {
char* replaced =
int iter = 0;
for(; *s; s++) {

malloc(sizeof(char) * strlen(s));

if(*s == '\033") {
while(*s !'= 'm') {
S++;
}
} else {
replaced[iter] = *s;
iter++;
}
}
replaced[iter] = '\0';

Figure 4.1: pacman/src/pacman/util.c#L452-473

Recommendations
Short term, fix the buffer overflow read issue in the string_length function.

Long term, implement a fuzzing harness for the string_length function to make sure it
doesn't contain any bugs. An example harness code for it can be found in figure 4.2 and
which can be compiled and run using the following commands:

Trail of Bits 41 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-473

clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer
./fuzzer

Figure 4.3 shows an example output of such a fuzzer. We also implemented this harness as
part of the Pacman codebase as detailed in Appendix D.

#define _XOPEN_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <wchar.h>

static size_t string_length(const char *s) { ... }

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
if (Size == @) return ©;

// Prepare a null terminated string
char* x = malloc(Size+1);

memcpy(x, Data, Size);

x[Size] = 0;

string_length(x);

free(x);
return 0;

}

Figure 4.2: Example fuzzing harness that uses libFuzzer to test the string_length function

$ clang -fsanitize=fuzzer,address main.c -ggdb -o fuzzer

S ./fuzzer

INFO: Running with entropic power schedule (OxFF, 100).

INFO: Seed: 17960240281

INFO: Loaded 1 modules (12 inline 8-bit counters): 12 [Bx56046acc5fc@,
0x56046acc5fcc),

INFO: Loaded 1 PC tables (12 PCs): 12 [0x56046acc5fd@,0x56046acc6090),

INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096

bytes
INFO: A corpus is not provided, starting from an empty corpus
#2 INITED cov: 4 ft: 5 corp: 1/1b exec/s: @ rss: 36Mb

#173 REDUCE cov: 5 ft: 6 corp: 2/2b lim: 4 exec/s: @ rss: 31Mb L: 1/1 MS: 1

==2873139==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000006b53
at pc 0x56046ac84a76 bp 0x7ffde9eB7efd sp Ox7ffd09e0B7ee8
READ of size 1 at 0x602000006b53 thread TO

#0 0x56046ac84a75 in string_length /fuzz/main.c:21:11

#1 0x56046ac8483d in LLVMFuzzerTestOneInput /fuzz/main.c:56:2

#2 0x56046abad383 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,

Trail of Bits 42 Pacman Security Assessment
CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html

unsigned long) (/fuzz/fuzzer+6x3e383) (BuildId:
65f386451dc943b740358¢c52379831570eef52be)

0x602000006b53 is located 0 bytes to the right of 3-byte region
[0x602000006b50, Bx602000006b53)
allocated by thread TO here:

#0 0x56046ac499fe in malloc (/fuzz/fuzzer+Bxda9fe) (BuildId:
65f386451dc943b740358¢c52379831570eef52be)

#1 Ox56046ac847db in LLVMFuzzerTestOneInput /root/fuz/main.c:53:12

SUMMARY : AddressSanitizer: heap-buffer-overflow /root/fuz/main.c:21:11 in
string_length

Figure 4.3: Output from the fuzzer from figure 4.2

Trail of Bits 43 Pacman Security Assessment
CONFIDENTIAL

5. Undefined behavior or potential null pointer dereferences by passing null
pointers to functions requiring non-null arguments

Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-PACMAN-5

Target: multiple codepaths

Description

There are a few code paths where a null pointer dereference or undefined behavior may
happen if certain conditions are met. Those issues can be detected with the scan-build
static analyzer or by building and by running Pacman with the undefined behavior sanitizer.
The scan-build results were shared along with this report.

One of the code paths found by scan-build is in the lib/libalpm/remove.c file. The
closedir(dir) function may be called with a null pointer when the condition that calls
regcomp(...) is true (figure 5.1). This is undefined behavior since the closedir function
argument is marked as nonnull.

static void shift_pacsave(alpm_handle_t *handle, const char *file) {
DIR *dir = NULL;

if(regcomp(®, regstr, REG_EXTENDED | REG_NEWLINE) !'= 8) {
goto cleanup;

}
dir = opendir(dirname); // <-- the dir was only modified here
cleanup:

free(dirname);
closedir(dir);

Figure 5.1: pacman/lib/libalpm/remove.c#L349-423

Another case is in the mount_point_list function (figure 5.2). If the STRDUP macro is
executed with a null pointer mnt->mnt_dir, then the strlen(mp->mount_dir) call will
take a null pointer.

static alpm_list_t *mount_point_list(alpm_handle_t *handle) {
#if defined (HAVE_GETMNTENT) && defined(HAVE_MNTENT_H)

Wﬁile((mnt = getmntent(fp))) {

Trail of Bits 44 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/remove.c#L349-423

CALLOC(mp, 1, sizeof(alpm_mountpoint_t), RET_ERR(handle,
ALPM_ERR_MEMORY, NULL));

STRDUP(mp->mount_dir, mnt->mnt_dir, free(mp); RET_ERR(handle,
ALPM_ERR_MEMORY, NULL));

mp->mount_dir_len = strlen(mp->mount_dir);

Figure 5.2: pacman/lib/libalpm/diskspace.c#L95-116

In addition to that, figure 5.3 shows a run of pacman with undefined behavior sanitizer that
detects other cases of this issue.

CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson
setup sanitize
cd sanitize
CFLAGS=-fsanitize=address,undefined LDFLAGS=-fsanitize=address,undefined meson
compile
./pacman -Syuu

:: Synchronizing package databases...

core downloading...

extra downloading...

:: Starting full system upgrade...

../1ib/1ibalpm/util.c:1149:9: runtime error: null pointer passed as argument 1,
which is declared to never be null

../1ib/1ibalpm/util.c:1151:10: runtime error: null pointer passed as argument 1,
which is declared to never be null

../1ib/1ibalpm/util.c:1192:4: runtime error: null pointer passed as argument 2,
which is declared to never be null

:: Proceed with installation? [Y/n] Y

Figure 5.3: Running Pacman with UndefinedBehavior sanitizer

Recommendation
Short term, fix the cases where functions marked with non-null arguments are called with
null pointers.

Long term, regularly test pacman with undefined behavior sanitizer as well as scanning its
codebase with static analyzers such as scan-build.

Trail of Bits 45 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/diskspace.c#L95-116

6. Undefined behavior from use of atoi
Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-PACMAN-6

Target: 1ib/libalpm/be_local.c, src/pacman/pacman.c

Description

The atoi function is used to convert strings to integers, when parsing local database files
and command line arguments (figure 6.1, 6.2). The behavior of atoi is undefined in the
case that the inputted string is not a valid formatted number, or in the case of an overflow.
The severity of this finding is informational since, in practice, atoi will typically return a
dummy value, such as 0 or -1, in the case of an incorrect input or an overflow.

} else if(strcmp(line, "%REASON%") == 0) {
READ_NEXT() ;
info->reason = (alpm_pkgreason_t)atoi(line);

Figure 6.1: Use of ato1i (lib/libalpm/be_local.c#L774-776)

case OP_ASK:
config->noask = 1;
config->ask = (unsigned int)atoi(optarg);
break;

case OP_DEBUG:
/* debug levels are made more 'human readable' than using a raw logmask
* here, error and warning are set in config_new, though perhaps a
* --quiet option will remove these later */
if(optarg) {
unsigned short debug = (unsigned short)atoi(optarg);
switch(debug) {

case 2:
config->logmask |= ALPM_LOG_FUNCTION;
__attribute__((fallthrough));
case 1:
config->logmask |= ALPM_LOG_DEBUG;
break;
default:
pm_printf(ALPM_LOG_ERROR, _("'%s' is not a valid debug
level\n"),
optarg);
return 1;
}
} else {
Trail of Bits 46 Pacman Security Assessment

CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/be_local.c#L774-776

config->logmask |= ALPM_LOG_DEBUG;
}

/* progress bars get wonky with debug on, shut them off */
config->noprogressbar = 1;
break;

Figure 6.2: Uses of ato1i (src/pacman/pacman.c#L382-430)

Recommendations
Short term, use the strtol function instead of atoi. Check the errno value after calling

strtol to check for a failed conversion. Make sure to perform bounds checking when
casting the long value returned by strtol down to an int.

Trail of Bits 47 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/src/pacman/pacman.c#L382-430

7. Database parsers fail silently if an option is not recognized
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-PACMAN-7

Target: 1ib/1ibalpm/be_sync.c, 1lib/libalpm/be_local.c

Description

The sync_db_read and local_db_read functions, which are responsible for parsing sync
database files and local database files respectively, fail silently if an option is not
recognized. This can cause a configuration option to not be set which may cause issues if,
for example, the local installation of Pacman is out of date and does not support
newly-added configuration options.

Exploit Scenario

Support for SHA-3 hash verification is added, along with a corresponding configuration
option %SHA3SUM%. Older installations of Pacman, which do not support this configuration
option, will instead ignore it. This causes package hashes to not be verified.

Recommendations

Short term, add default behavior in the sync_db_read and local_db_read functions for
when a configuration option is not recognized. Unrecognized options should cause a log
message or an error.

Trail of Bits 48 Pacman Security Assessment
CONFIDENTIAL

8. Cache cleaning function may delete the wrong files
Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PACMAN-8

Target: src/pacman/sync.c

Description

In the sync_cleancache function, a path is constructed for deletion using the snprintf
function. A maximum path length of PATH_MAX is given (on Linux, this value is 4096
characters). However, there is no check to ensure that the path created by snprintf was
not cut short by the limit. This can lead to a different path than intended getting deleted.

The severity of this finding is informational since it is highly unlikely that Pacman would use
a path this long in practice.

/* build the full filepath */
snprintf(path, PATH_MAX, "%s%s", cachedir, ent->d_name);

/* short circuit for removing all files from cache */
if(level > 1) {

ret += unlink_verbose(path, 9);

continue;

Figure 8.1: pacman/src/pacman/sync.c#L241-248

Recommendations
Short term, add a check which compares the value returned by snprintf and ensures that
it is less than PATH_MAX.

Trail of Bits 49 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/sync.c#L241-248

9. Integer underflow in a length check leading to out-of-bounds read in
alpm_extract_keyid

Severity: Undetermined Difficulty: High

Type: Data Validation Finding ID: TOB-PACMAN-9
Target: 1ib/1libalpm/signing.c

Description
The alpm_extract_keyid function (figure 9.1) contains an out-of-bounds read issue due

to an integer underflow in 1length_check function when a specifically crafted input is
provided (figure 9.2).

int SYMEXPORT alpm_extract_keyid(alpm_handle_t *handle, const char *identifier,
const unsigned char *sig, const size_t len, alpm_list_t **keys) {
size_t pos, blen, hlen, ulen;
pos = 0;

while(pos < len) {
if(!'(sig[pos] & ©x808)) { ... - return signature format error }

if(sig[pos] & 0x40) {
/* new packet format */
if(length_check(len, pos, 1, handle, identifier) != 0) {
return -1;

}

pos = pos + 1;

Figure 9.1: pacman/lib/libalpm/signing.c#L1101-1223

/* Check to avoid out of boundary reads */
static size_t length_check(size_t length, size_t position, size_t a,
alpm_handle_t *handle, const char *identifier) {
if(a == 0 || length - position <= a) {
_alpm_log(handle, ALPM_LOG_ERROR,
_("%s: signature format error\n"), identifier);

return -1;
} else {
return 0;
}
}
Figure 9.2: pacman/lib/libalpm/signing.c#L1043-1054
Trail of Bits 50 Pacman Security Assessment

CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/3405709b463db4c566ccd7c9c9ad42594a9c6076/lib/libalpm/signing.c#L1043-1054

The 1length_check function is used to confirm if advancing a position (pos) index is safe. It
is used by alpm_extract_keyid for example in the following way:

length_check(len, pos, 2, handle, identifier)

The len is the length of the signature buffer (sig) and pos is an index in that buffer.
However, the pos index can be bigger than the 1en variable and when that happens, then
the length-position computation in the length_check function underflows and the
function returns 0, leading to the out-of-bounds read.

We found this issue by fuzzing the alpm_extract_keyid function. The fuzzing harness
code is included in Appendix D.

Recommendation
Short term, fix the integer underflow issue in the 1length_check function. This will prevent
out-of-bound reads in the alpm_extract_keyid function.

Long term, fuzz the Pacman functions, for example as shown in Appendix D.

Trail of Bits 51 Pacman Security Assessment
CONFIDENTIAL

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
CONFIDENTIAL

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

52 Pacman Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
CONFIDENTIAL

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

53 Pacman Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this

document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating

Strong
Satisfactory

Moderate

Trail of Bits
CONFIDENTIAL

Description
No issues were found, and the system exceeds industry standards.
Minor issues were found, but the system is compliant with best practices.

Some issues that may affect system safety were found.

54 Pacman Security Assessment

I Weak Many issues that affect system safety were found.
I Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 55 Pacman Security Assessment

CONFIDENTIAL

C. Code Quality Findings

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the

future.

Remove the if (fd >= 0) condition in the _alpm_pkg_load_internal function
since it is always true. This is because if the fd is less than 0 the function returns NULL in
a previous condition.

alpm_pkg_t *_alpm_pkg_load_internal(alpm_handle_t *handle,

error:

const char *pkgfile, int full) {
int ret, fd;

fd = _alpm_open_archive(handle, pkgfile, &st, &archive, ALPM_ERR_PKG_OPEN);
if(fd < 0)

return NULL;

_alpm_pkg_free(newpkg) ;
_alpm_archive_read_free(archive);
if(fd >= 0) {

close(fd);
}

return NULL;

Figure C.1: pacman/lib/libalom/be_package.c#L569-688

Use the strdup function to duplicate a string in the clean_filename function. This
can be done instead of computing the string length, allocating memory and copying the
filename with memcpy.

static char *clean_filename(const char *filename) {

int len = strlen(filename);

char *p;

char *fname = malloc(len + 1);
memcpy (fname, filename, len + 1);

Figure C.2: pacman/src/pacman/callback.c#L755-760

Trail of Bits 56 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_package.c#L569-688
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/callback.c#L755-760

Refactor the dead assignment to the curlerr variable in the
curl_check_finished_download function. The assignment should be either removed or
there should be code that would act upon its value.

static int curl_check_finished_download(alpm_handle_t *handle, CURLM *curlm, CURLMsg
*msg, const char *localpath, int *active_downloads_num) {

CURLcode curlerr;

case CURLE_ABORTED_BY_CALLBACK:
/* handle the interrupt accordingly */
if(dload_interrupted == ABORT_OVER_MAXFILESIZE) {
curlerr = CURLE_FILESIZE_EXCEEDED;
payload->unlink_on_fail = 1;
handle->pm_errno = ALPM_ERR_LIBCURL;
_alpm_log(handle, ALPM_LOG_ERROR,
_("failed retrieving file '%s' from %s
expected download size exceeded\n"),
payload->remote_name, hostname);
server_soft_error(handle, payload->fileurl);

}

goto cleanup;
cleanup:
// <-- code that does not use the curlerr variable
return ret;

Figure C.3: pacman/lib/libalpm/dload.c#L535-546

Remove the r variable from the _cache_mtree_open function and an assignment to
it since it is unused. Alternatively, if it is intended, use the value of r within the if
condition.

static struct archive *_cache_mtree_open(alpm_pkg_t *pkg) {
int r;

if((r = _alpm_archive_read_open_file(mtree, mtfile, ALPM_BUFFER_SIZE))) {
_alpm_log(pkg->handle, ALPM_LOG_ERROR, _("error while reading file %s:

%s\n"),
mtfile, archive_error_string(mtree));
_alpm_archive_read_free(mtree);
GOTO_ERR(pkg->handle, ALPM_ERR_LIBARCHIVE, error);:
}
free(mtfile);

return mtree;

error:
free(mtfile);
return NULL;

Trail of Bits 57 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L535-546

Figure C.4: pacman/lib/libalpm/be_local.c#L251-284

Return an error if the call to malloc fails in alpm_list_add_sorted function.
Currently, the function returns the existing list, even though it failed to insert the element
as expected. This function is currently unused, so this does not yet pose a security concern.

add = malloc(sizeof(alpm_list_t));
if(add == NULL) {
return list;

}
Figure C.5: pacman/lib/libalpm/alpm_list.c#L115-118

Restore the list variable to its original state before returning in the
alpm_list_reverse function. In the beginning of the function, the 1ist->prev member
is backed up and then modified. However, in the case of an error, this backup is not
restored, leaving the list in an invalid state.

alpm_list_t SYMEXPORT *alpm_list_reverse(alpm_list_t *1list) {
const alpm_list_t *1p;
alpm_list_t *newlist = NULL, *backup;

if(list == NULL) {
return NULL;
}

1p = alpm_list_last(list);

/* break our reverse circular list */
backup = list->prev;

list->prev = NULL;

while(1lp)
if(alpm_list_append(&newlist, lp->data) == NULL) {
alpm_list_free(newlist);
return NULL;
}
lp = 1lp->prev;
}
list->prev = backup; /* restore tail pointer */
return newlist;

Figure C.6: pacman/lib/libalpm/alpm_list.c#L403-426

Rename the type variable to event in the alpm_list_reverse function. When a
download payload is sent over a pipe in PR 23 (from the _alpm_sandbox_cb_d1 function

Trail of Bits 58 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L251-284
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L115-118
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/alpm_list.c#L403-426
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L126

to the _alpm_sandbox_process_cbh_download function), a variable called event is sent

through the pipe and received into a variable called type. This can cause confusion when
reading the sending and receiving code.

Rework the had_error variable in the curl_download_internal_sandboxed
function. The variable will always be set to true by the time the loop shown in figure C.7
exits. This is because every break statement is accompanied with a statement setting
had_error to true. This means that the variable does not track any useful information.

bool had_error = false;
while(true) {
_alpm_sandbox_callback_t callback_type;
ssize_t got = read(callbacks_fd[0], &callback_type, sizeof(callback_type));
if(got < @ || (size_t)got != sizeof(callback_type)) {
had_error = true;
break;

}

if(callback_type == ALPM_SANDBOX_CB_DOWNLOAD) {
if(!_alpm_sandbox_process_cb_download(handle, callbacks_fd[@])) {
had_error = true;
break;
}
}
else if(callback_type == ALPM_SANDBOX_CB_LOG) {

if(!'_alpm_sandbox_process_cb_log(handle, callbacks_fd[08])) {
had_error = true;
break;

if(had_error) {
kill(pid, SIGTERM);
}

Figure C.7: PR 23: pacman/lib/libalom/dload.c#L974-1000

Verify the %REASON% field before casting it to an alpm_pkgreason_t enum value in
the local_db_read function. Otherwise, the field may contain a value which is a valid
integer but not a valid alpm_pkgreason_t value.

} else if(strcmp(line, "%REASON%") == 0) {
READ_NEXT();
info->reason = (alpm_pkgreason_t)atoi(line);

Figure C.8: pacman/lib/libalpm/be_local.c#L774-776

Trail of Bits 59 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/sandbox.c#L180
https://gitlab.archlinux.org/pacman/pacman/-/blob/f4c60d3071cb19374c9c3bf367d8285162a94d3a/lib/libalpm/dload.c#L974-1000
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/be_local.c#L774-776

Correct the log message at the end of the curl_download_internal function. The
message incorrectly states the value returned by the function.

_alpm_log(handle, ALPM_LOG_DEBUG, "curl_download_internal return code is %d\n",
err);
return err ? -1 : updated ? 0 : 1;

Figure C.9: pacman/lib/libalpm/dload.c#L937-938

Refactor the ALPM public functions from returning an int to return a status type.
This new type could be a typedef for an int. Such a change would make it easier to
perform static analysis to find all functions that return the typedef and ensure that the
callers check for errors.

[Errors]

The library provides a global variable pm_errno.
It aims at being to the library what errno is for C system calls.

Almost all public library functions are returning an integer value: ©
indicating success, -1 indicating a failure.

If -1 is returned, the variable pm_errno is set to a meaningful value
Wise frontends should always care for these returned values.

Note: the helper function alpm_strerror() can also be used to translate one
specified error code into a more friendly sentence, and alpm_strerrorlast()
does the same for the last error encountered (represented by pm_errno).

Figure C.10: pacman/README?plain=1#L144-156

Trail of Bits 60 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/dload.c#L937-938
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/README?plain=1#L144-156

D. Fuzzing Pacman code

During the audit, Trail of Bits used fuzzing, an automated testing technique in which code
paths are executed with random data to find bugs resulting from the incorrect handling of
unexpected data. For this, we used libFuzzer, an in-process coverage-guided fuzzer, and we
extended the Pacman build system with new executables to fuzz certain code paths. This
helped us to find issues detailed in findings TOB-PACMAN-4 and TOB-PACMAN-9.

We implemented fuzzing harnesses for:

The string_length function

The wordsplit function

Parsing of config files through the parseconfigfile function

The extraction of keys from signature data through the alpm_extract_keyid
function

For this, we also modified the meson.build file so that all the files are built with
AddressSanitizer (-fsanitize=address compiler and linker flag) that helps detect more
bugs. In order to build the harnesses and run them, we leveraged the following commands:

CC=clang meson setup fuzz

cd fuzz

CC=clang meson compile <harness, e.g., fuzz_alpm_extract_keyid>
./<harness binary>

We used the clang compiler because in our case, where we performed fuzzing in an Arch
Linux docker container, the GCC compiler did not support the -fsanitize=fuzzer flag
that enables the libFuzzer fuzzing framework.

The implemented code can be seen in figure D.1 and will also be sent as a merge request
against the Pacman repository after the final readout of this report.

Fuzzing harness notes

Below we present some notes about the changes and harnesses we developed.

e The add_project_arguments added to the meson.build is suboptimal and has
to be refactored, so it is enabled only when fuzzing harnesses are built, or the
specific dependencies/libraries need to have separate fuzzing targets so they are
built with AddressSanitizer enabled.

e None of the external dependencies are built with AddressSanitizer or
UndefinedBehavior sanitizer. This may cause false positive crashes when new
harnesses are developed that leverage the code paths of those dependencies, or it
may lead to not detecting valid bugs.

Trail of Bits 61 Pacman Security Assessment
CONFIDENTIAL

https://llvm.org/docs/LibFuzzer.html
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/util.c#L452-490
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/common/util-common.c#L238-337
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/src/pacman/conf.c#L1192-1197
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://gitlab.archlinux.org/pacman/pacman/-/blob/18e49f2c97f0e33a645f364ed9de8e3da6c36d41/lib/libalpm/signing.c#L1101-1223
https://github.com/google/sanitizers/wiki/AddressSanitizer

We encountered some issues with including headers from src/pacman in
fuzz_parseconfigfile and fuzz_string_length harnesses, which we worked
around by providing the fuzzed function declarations in the harnesses itself. This
should be fixed so that the headers are included properly. The same goes for, e.g.,
the extern void *config; global variable.
The fuzz_wordsplit harness can be refactored to free its resources via the
wordsplit_free function.
The fuzz_alpm_extract_keyid does not set proper handle or filename
arguments. Setting these arguments may leverage more code paths in the harness.
The fuzz_parseconfigfile is far from ideal: the generated input may include
other files from the filesystem to be parsed by the code, which is nondeterministic.
The solution to that could be:

o Either use chroot or mount namespaces so that the fuzzer works in an

isolated filesystem with no other files included,

o Or changing the harness so it only generates semi-valid config files.
We added an #ifndef FUZZING_PACMAN to remove the main function of Pacman
for the fuzzing harnesses which need the src/pacman code. Otherwise, the linking of
the harness would fail due to multiple definitions of the main symbol.

Recommendations and further work

Going further, we recommend the Pacman team to:

Refactor the build system to better support the building of fuzzing harnesses
(instead of setting global arguments as we did).

Extend the build system so it also builds all of the dependencies’ code with
sanitizers enabled.

Test and fuzz the code with other sanitizers enabled that we haven't tried here (e.g.,
MemorySanitizer or ThreadSanitizer in case threads would ever be used in Pacman).
Implementing more fuzzing harnesses, for example for the
dload_parseheader_cb function and other functionalities that parse untrusted
data.

Fuzzing Pacman continuously with each release. This can be done by integrating it
into the oss-fuzz project, which allows for free fuzzing of open source projects.
However, please note that the company beyond the oss-fuzz project, Google, will
know about the found vulnerabilities first.

diff --git a/meson.build b/meson.build
index 43705338..bfecal3af 100644

--- a/meson.build

+++ b/meson.build

@@ -14,6 +14,8 @@ libalpm_version = '13.0.1"

cc = meson.get_compiler('c")

+add_project_arguments(['-fsanitize=address', '-fno-omit-frame-pointer', '-ggdb', '-00'], language : 'c')

Trail of Bits 62 Pacman Security Assessment
CONFIDENTIAL

https://github.com/google/oss-fuzz

n
commandline options

PREFIX = get_option('prefix"')

DATAROOTDIR = join_paths(PREFIX, get_option('datarootdir'))
@@ -305,6 +307,8 @@ subdir('src/pacman')

subdir('src/util’)

subdir('scripts')

+subdir('src/fuzzing')
|
Internationalization
if get_option('i18n")
i18n = import('i18n")
@@ -396,6 +400,45 @@ executable(
install : true,

)

+# Note: fuzz targets below must be built with Clang compiler for the -fsanitize=fuzzer flag
+executable(

+ 'fuzz_wordsplit',

+ fuzz_wordsplit_sources,

+ include_directories : includes,

+ link_with : [libcommon],

+ dependencies : [],

+ c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer'],

+ link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer'],
+
+

)

+executable(

'fuzz_string_length',

[fuzz_string_length_sources, pacman_sources],

include_directories : includes,

link_with : [libalpm_a, libcommon]

dependencies : [],

c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-08', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
+ link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer'],

+)

+executable(

'fuzz_alpm_extract_keyid',

[fuzz_alpm_extract_keyid_sources, pacman_sources],

include_directories : includes,

link_with : [libalpm_a, libcommon]

dependencies : [],

c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
+ link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer'],

+)

+executable(

+ 'fuzz_parseconfigfile',

+ [fuzz_parseconfigfile_sources, pacman_sources],
+ include_directories : includes,

+ link_with : [libalpm_a],

+ dependencies : [],
+
+
+
+

+ o+ o+ o+ o+ o+

+ o+ o+ o+ 4+

c_args : ['-fsanitize=fuzzer,address', '-ggdb', '-00', '-fno-omit-frame-pointer', '-DFUZZING_PACMAN'],
link_args : ['-fsanitize=fuzzer,address', '-ggdb', '-08', '-fno-omit-frame-pointer'],

)

foreach wrapper : script_wrappers
cdata = configuration_data()
cdata.set_quoted('BASH', BASH.full_path())
diff --git a/src/fuzzing/fuzz_alpm_extract_keyid.c b/src/fuzzing/fuzz_alpm_extract_keyid.c
new file mode 100644
index 00000000..febbd57a
--- /dev/null
+++ b/src/fuzzing/fuzz_alpm_extract_keyid.c
@@ -0,0 +1,26 0@
+#define _XOPEN_SOURCE
+#include <stdio.h>
+#include <stdlib.h>

Trail of Bits 63 Pacman Security Assessment
CONFIDENTIAL

+#include <stdint.h>
+#include <string.h>
+#include <wchar.h>

|

+/* libalpm */
+#include "alpm.h"
+#include "alpm_list.h"
+#include "handle.h"

|

+int LLVMFuzzerTestOneInput(const uint8_t *Data,

+

+int LLVMFuzzerTestOneInput(const uint8_t *Data,

if (Size == 0)
return 0;

alpm_list_t *keys = NULL;

+ o+ o+ o+ o+ o+

ER

return 0;

+}

size_t Size);

size_t Size) {

alpm_handle_t handle; // TODO/FIXME?
const char* filename = "/dev/null"; // TODO/FIXME?

alpm_extract_keyid(&handle, filename, /* sig */ Data, /* len */ Size, &keys);

diff --git a/src/fuzzing/fuzz_parseconfigfile.c b/src/fuzzing/fuzz_parseconfigfile.c

new file mode 100644

index 00000000..4746141d

--- /dev/null

+++ b/src/fuzzing/fuzz_parseconfigfile.c
@@ -9,0 +1,43 @@

+#include <stdio.h>

+#include <stdlib.h>

+#include <stdint.h>

+#define _GNU_SOURCE

+#include <sys/mman.h>

+#include <unistd.h>

|

+// TODO/FIXME: Fix the util.h include
+//#include "conf.h"

+// And remove that function header from here
+int parseconfigfile(const char *s);
+extern void *config;

+void *config_new(void);

|

+int LLVMFuzzerTestOneInput(const uint8_t *Data,

+

+// TODO/FIXME: This fuzzer should always be run
+// without any other files in it; otherwise the

+// to other files

+int LLVMFuzzerTestOneInput(const uint8_t *Data,

size_t Size);

from a chroot
configfile may refer

size_t Size) {

+ static void* config_object = 0;

|

+ // TODO/FIXME: The harness needs to be run with -detect_leaks=0
+ // because the config object here is detected as a leak

+ if (!config_object) {

+ config = config_object = config_new();

+ }

|

+ if (Size == 0)

+ return 0;

|

+ int fd = memfd_create("input", 0); // create an in-memory file we can have path to
+ write(fd, Data, Size);

|

+ char path[64] = {0};

+ sprintf(path, "/proc/self/fd/%d", fd);

|

+ parseconfigfile(path);

|

Trail of Bits
CONFIDENTIAL

64

Pacman Security Assessment

+ close(fd);
+
+ return 0;

+}

diff --git a/src/fuzzing/fuzz_string_length.c b/src/fuzzing/fuzz_string_length.c

new file mode 100644

index 00000000..8991b476

--- /dev/null

+++ b/src/fuzzing/fuzz_string_length.c

@@ -0,0 +1,26 0@

+#include <stdio.h>

+#include <stdlib.h>

+#include <string.h>

+

+// TODO/FIXME: Fix the util.h include

+//#include "util.h"

+// And remove that function header from here

+size_t string_length(const char *s);

+

+int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
+

+int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

+ if (Size == 0)

+ return 0;

+

+ // Prepare a null terminated string
+ char* cstring = malloc(Size+1);
+ memcpy(cstring, Data, Size);

+ cstring[Size] = 9;

+

+ string_length(cstring);

+

+ free(cstring);

+

+ return 0;

+}

diff --git a/src/fuzzing/fuzz_wordsplit.c b/src/fuzzing/fuzz_wordsplit.c
new file mode 100644

index 00000000..e2e10210

--- /dev/null

+++ b/src/fuzzing/fuzz_wordsplit.c

@@ -0,0 +1,36 0@

+#define _XOPEN_SOURCE

+#include <stdio.h>

+#include <stdlib.h>

+#include <stdint.h>

+

+#include "util-common.h"

|

+int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
|

+int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

+ if (Size == 0)

+ return 0;

|

+ // Prepare a null terminated string

+ char* cstring = malloc(Size+1);

+ memcpy(cstring, Data, Size);

+ cstring[Size] = 9;

|

+ char** ptr = wordsplit(cstring);

|

+ // Free the memory allocated by wordsplit
+ if (ptr) {

+ int 1 = 0;

+ char* p = ptr[i++];

+ while (p) {

+ free(p);

Trail of Bits 65

CONFIDENTIAL

Pacman Security Assessment

+ p = ptrii++];

+ }

+ free(ptr);

+ }

+

+ // Free the allocated cstring
+ free(cstring);

+

+ return 0;

+}

diff --git a/src/fuzzing/meson.build b/src/fuzzing/meson.build
new file mode 100644
index 00000000..9a8555¢c2
--- /dev/null
+++ b/src/fuzzing/meson.build
@@ -0,0 +1,15 @@
+fuzz_wordsplit_sources = files('''
+ fuzz_wordsplit.c
+'" ' split())
|
+fuzz_string_length_sources = files('''
+ fuzz_string_length.c
+'"" Usplit())
|
+fuzz_alpm_extract_keyid_sources = files('''
+ fuzz_alpm_extract_keyid.c
+'" ' split())
=
+fuzz_parseconfigfile_sources = files('"'
+ fuzz_parseconfigfile.c
+'" ' split())
\ No newline at end of file
diff --git a/src/pacman/pacman.c b/src/pacman/pacman.c
index e5c6e420..77c88392 100644
--- a/src/pacman/pacman.c
+++ b/src/pacman/pacman.c
@@ -1079,6 +1079,7 @@ static void cl_to_log(int argc, char *argv[])
}
}

+#ifndef FUZZING_PACMAN
/** Main function.
* @param argc
* @param argv
@@ -1273,3 +1274,4 @@ int main(int argc, char *argv[])
/* not reached */
return EXIT_SUCCESS;
}
+#endif //FUZZING_PACMAN
diff --git a/src/pacman/util.c b/src/pacman/util.c
index 5d42a6e9..a41c9e5e 100644
--- a/src/pacman/util.c
+++ b/src/pacman/util.c
@@ -449,7 +449,7 @@ static char *concat_list(alpm_list_t *1st, formatfn fn)
return output;

}

-static size_t string_length(const char *s)
+size_t string_length(const char *s)
{
int len;
wchar_t *wcstr;
diff --git a/src/pacman/util.h b/src/pacman/util.h
index 52e79915..d8f7f5f2 100644
--- a/src/pacman/util.h
+++ b/src/pacman/util.h
@@ -47,6 +47,7 @@ typedef struct _pm_target_t {
int is_explicit;

Trail of Bits 66 Pacman Security Assessment
CONFIDENTIAL

} pm_target_t;

+size_t string_length(const char *s);

void trans_init_error(void);

/* flags is a bitfield of alpm_transflag_t flags */
int trans_init(int flags, int check_valid);

Figure D.1: The diff for the fuzzing harness code

Trail of Bits 67 Pacman Security Assessment
CONFIDENTIAL

E. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From March 4 to Month 6, 2024, Trail of Bits reviewed the fixes and mitigations
implemented by the Arch Linux team for the issues identified in this report. We reviewed
each fix to determine its effectiveness in resolving the associated issue.

In summary, of the 9 issues described in this report, Arch Linux has resolved 7 issues, and
has partially resolved 2 issues. For additional information, please see the Detailed Fix
Review Results below.

ID Title Status
1 Use-after-free vulnerability in the print_packages function Resolved
2 Null pointer dereferences Resolved
3 Allocation failures can lead to memory leaks or null pointer Resolved
dereferences
4 Buffer overflow read in string_length utility function Resolved
5 Undefined behavior or potential null pointer dereferences by passing Partially
null pointers to functions requiring non-null arguments Resolved
6 Undefined behavior from use of atoi Resolved
7 Database parsers fail silently if an option is not recognized Resolved
8 Cache cleaning function may delete the wrong files Partially
Resolved
9 Integer underflow in a length check leading to out-of-bounds read in Resolved

alpm_extract_keyid

Trail of Bits 68 Pacman Security Assessment
CONFIDENTIAL

Detailed Fix Review Results

TOB-PACMAN-1: Use-after-free vulnerability in the print_packages function
Resolved in commit 36fcff6ée. This commit adds an assignment which overwrites the
freed temp variable with the newly allocated string variable.

TOB-PACMAN-2: Null pointer dereferences
Resolved in commit 74deada5. This commit adds the necessary checks to determine
whether or not the pkgname variable is null before using it.

The Pacman developers correctly identified that the write_to_child function can only
ever be called with a non-null callback, so a fix for that portion of the issue was not
necessary.

TOB-PACMANS-3: Allocation failures can lead to memory leaks or null pointer
dereferences

Resolved in commits 6711d10f and abc6dd74. Commit 6711d10f adds a check to the
setdefaults function which ensures that the pointer returned strdup is non-null before
using it. Commit abc6dd74 adds a check to the alpm_list_cmp_unsorted function which
ensures that the pointer returned by calloc is non-null before using it.

The Pacman developers identified the code in figure 3.3 as not being an issue. We have
confirmed that this is the case: it should not be possible for the 1ine variable to be null
without the goto error statement being executed; this prevents pkg->filename from
being null in the call to the _alpm_validate_filename function.

TOB-PACMAN-4: Buffer overflow read in string_length utility function

Resolved in commit c9c56be3. This commit changes the string_length function so that it
loops under more strict conditions: it stops once it reaches a character that isn't a digit or a
semicolon, rather reading until an ‘m’ is found.

TOB-PACMAN-5: Undefined behavior or potential null pointer dereferences by
passing null pointers to functions requiring non-null arguments

Partially resolved in commits f996f301 and ce528a26. Commit f996f301 adds a check to the
shift_pacsave function which ensures that the dir pointer is non-null before using it in
aclosedir(dir) call. Commit ce528a26 adds a check to the mount_point_list
function which ensures that the mnt->mnt_dir value is non-null before attempting to
duplicate it into mp->mount_dir using the STRDUP macro. This ensures that
mp->mount_dir will be non-null as well, which prevents undefined behavior during the call
to strlen(mp->mount_dir).

The instances of undefined behavior shown in figure 5.3 have not been resolved.

Trail of Bits 69 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/commit/36fcff6e13ac65797936faf716e4295eaf52ad48
https://gitlab.archlinux.org/pacman/pacman/-/commit/74deada511358a4ce9c10ee0c6ae216e2c6c6b73#
https://gitlab.archlinux.org/pacman/pacman/-/commit/6711d10f96e0862f7b0b086d3a35358787b6d552#
https://gitlab.archlinux.org/pacman/pacman/-/commit/abc6dd7411c57cad0805b3cf51271847d9d0679e#
https://gitlab.archlinux.org/pacman/pacman/-/commit/c9c56be3960c7ba7ccacc7ccc992965f16b9eba0
https://gitlab.archlinux.org/pacman/pacman/-/commit/f996f301631625d7b98b60ebd1b6dad1f3a11a74#
https://gitlab.archlinux.org/pacman/pacman/-/commit/ce528a26549f9456d5126f40347af44e69f448c1#

TOB-PACMAN-6: Undefined behavior from use of atoi

Resolved in commit 6e6d3f18 and PR 136. Commit 6e6d3f18 replaces the use of atoi in
the _alpm_local_db_pkgpath function with a set of strcmp comparisons. PR 136
replaces the uses of atoi in the parsearg_global function with calls to strtol,
performing all the necessary error checks.

TOB-PACMAN-7: Database parsers fail silently if an option is not recognized
Resolved in commit e1dc6099. This commit adds a warning message which is logged in the
case of an unknown option.

TOB-PACMAN-8: Cache cleaning function may delete the wrong files

Partially resolved in commit a6b25247. This commit adds a check determining whether len
> PATH_MAX, and skipping the current file if this is the case. However, the check should
instead determine whether 1en >= PATH_MAX, since the value returned by the snprintf
function does not count the trailing null character.

In addition, the commit also fixes a very similar issue in the sync_cleandb function which
was not found during the audit. However, the fix for the sync_cleandb function only
prints an error message in the case of a problem, but does not skip the current file. In
addition, the fix has the same issue mentioned above of using the > operator rather than
the >= operator.

TOB-PACMAN-9: Integer underflow in a length check leading to out-of-bounds read in
alpm_extract_keyid

Resolved in commit 16a2a797. This commit adds an additional check for position >
length before computing length - position. If position is greater than length, an
error is returned.

Trail of Bits 70 Pacman Security Assessment
CONFIDENTIAL

https://gitlab.archlinux.org/pacman/pacman/-/commit/6e6d3f18e3a8d4cd4376c0922fdcaad354d35359
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/136
https://gitlab.archlinux.org/pacman/pacman/-/commit/e1dc609939cc5025213a51b76cf7c74b12eeab54
https://gitlab.archlinux.org/pacman/pacman/-/commit/a6b2524762eb3c024f5e6f58253f6f811e3d2dd3
https://gitlab.archlinux.org/pacman/pacman/-/commit/16a2a79728d6b3184fd36156b79b3c91d73b9292

F. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
CONFIDENTIAL

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

71 Pacman Security Assessment

