

Page 1 of 42

Privileged and Confidential
Report

Security Assessment and Architecture & Risk Analysis of

the Geph Desktop and Mobile Applications

Page 2 of 42

Privileged and Confidential
Report

TABLE OF CONTENTS

Executive Summary ... 4

Include Security (IncludeSec) .. 4

Assessment Objectives .. 4

Scope and Methodology ... 4

Findings Overview ... 4

Next Steps ... 4

Risk Categorizations .. 5

Critical-Risk .. 5

High-Risk.. 5

Medium-Risk ... 5

Low-Risk .. 5

Informational .. 5

Introduction .. 6

Medium-Risk Findings ... 7

M1: [binder] Passwords Cached in Plaintext .. 7

M2: [bridge] No Binary Authentication in Auto Update ... 8

M3: [Android] Application Executable Signed with v1 Signature Scheme (JANUS Vulnerability) 9

M4: [Android] [iOS] Daemon Commands Exposed to All Applications on Device 10

M5: [Android] Security Relevant User Data Stored in Clear Text ... 11

M6: [client] Time-Based Client Deanonymization .. 13

M7: [client] Client Did Not Validate Mizaru Keys.. 14

Low-Risk Findings .. 15

L1: [client] Registration Captcha Bypass ... 15

L2: [binder] Password Complexity Policy Does Not Follow Industry Guidelines 16

L3: [binder] Public Captcha Endpoint .. 18

L4: [Android] Application Allows Backups .. 19

L5: [Android] [iOS] Native Code Not Compiled with Stack Canary Exploit Mitigation 20

L6: [client] Non-Encrypted HTTP request.. 21

L7: [Android] Main Activity Configuration Enables Task Hijacking on Older Versions of Android 22

L8: Out-of-Date Libraries in Use .. 23

L9: [ui] User Credentials Exposed to All Processes ... 26

Informational Findings .. 28

Page 3 of 42

Privileged and Confidential
Report

I1: [Android] Network Security Configuration Allows Cleartext Communication to Servers in Older Versions of Android
 ... 28

Protocol and Cryptography Review .. 29

Threat Model .. 31

Software Development Lifecycle Review ... 36

SDLC Short-Term Goals ... 37

SDLC Medium-Term Goals .. 38

SDLC Long-Term Goals .. 39

Appendices .. 40

OWASP Mobile Top 10 .. 40

Page 4 of 42

Privileged and Confidential
Report

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

This assessment consisted of two main components: a security assessment and a holistic security analysis of the
Geph project. The objective of the security assessment was to identify and confirm potential security
vulnerabilities within targets in-scope of the SOW. The team assigned a qualitative risk ranking to each finding.
Recommendations were provided for remediation steps which Geph could implement to secure its applications
and systems.

The objective of the holistic security analysis was to formulate a set of prescriptive steps that the Geph team
can implement to ensure that security is built into every facet of the Geph software development lifecycle
(SDLC). Specific attention was paid to:

• Producing a high-level threat model, which can be used to drive future security initiatives for Geph.

• Assessing the security posture of Geph’s application infrastructure and application architecture.

• Performing a review of Geph’s cryptography and custom protocol.

• Identifying actionable process improvements to integrate security into Geph’s Software Development
Life Cycle (SDLC).

Scope and Methodology

Include Security performed a security assessment of Geph’s Desktop and Mobile Applications on behalf of the
Open Technology Fund. The assessment team performed a 16 day effort spanning from Jan 16th 2023 – Feb 6th
2023, using a Grey Box Standard assessment methodology which included a detailed review of all the
components described in a manner consistent with the original Statement of Work (SOW).

Findings Overview

IncludeSec identified 17 categories of findings. There were 7 deemed to be “Medium-Risk,” and 9 deemed to
be “Low-Risk,” which pose some tangible security risk. Additionally, 1 “Informational” level finding was
identified that does not immediately pose a security risk.

IncludeSec encourages Geph to redefine the stated risk categorizations internally in a manner that incorporates
internal knowledge regarding business model, customer risk, and mitigation environmental factors.

Next Steps

IncludeSec advises Geph to remediate as many findings as possible in a prioritized manner and make systemic
changes to the Software Development Life Cycle (SDLC) to prevent further vulnerabilities from being introduced
into future release cycles. This report can be used by as a basis for any SDLC changes. IncludeSec welcomes the
opportunity to assist Geph in improving their SDLC in future engagements by providing security assessments of
additional products. For inquiries or assistance scheduling remediation tests, please contact us at
remediation@includesecurity.com.

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

Page 5 of 42

Privileged and Confidential
Report

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary
to reproduce findings), Recommended Remediation, and References.

Page 6 of 42

Privileged and Confidential
Report

INTRODUCTION

Geph
Geph is an onion-routing network whose goal is to bypass Internet censorship. Desktop and mobile application
clients are available, which are used to route traffic through Geph exit servers that are based in countries that
do not censor websites. Traffic can first be forwarded through Geph-run bridges if direct connections to the
Geph exit servers are themselves censored. Traffic is encrypted and obfuscated to appear as random data in
transport. Unlike Tor and I2P, Geph optimizes for confidentiality, performance, and censorship circumvention
rather than anonymity against strong network adversaries.

The assessment team performed a 16-day assessment beginning on January 16th 2023 and ending on February
6th 2023. The assessment consisted of reviewing the Geph network and clients for security vulnerabilities, with
a particular focus on network integrity and risks to confidentiality.

The assessment consisted of first threat modelling, followed by a mix of source code review and dynamic testing,
and concluding with software development lifecycle review, and protocol and cryptography review. Source code
review was informed by static analysis tools including Semgrep, cargo audit, cargo geiger, and npm audit.
Dynamic testing was performed with the assistance of Wireshark and BurpSuite to monitor, replay and tamper
with protocol traffic. For the Android and iOS applications, the team additionally used the Drozer Mobile
Security Toolkit, Mobile Security Framework (MobSF), and Android SDK tools to assist in finding mobile-specific
vulnerabilities.

The following components were reviewed:

• geph4-client: command-line Geph client

• geph4-protocol: utilities for request-response protocols within Geph

• gephgui: Svelte (HTML/JS) app implementing a GUI for geph4-client

• gephgui-wry: Wrapper around gephgui for desktop platforms, using the "wry" WebView crate to display
the HTML/JS

• geph-android: similar, but for android

• gephgui-ios: similar, but for iOS

• gephgui-pkg: build scripts for building gephgui-wry for all desktop platforms

• geph4-exit: daemon running on Geph exit servers. VPN traffic is end-to-end encrypted between clients
and exits

• geph4-bridge: daemon running on Geph bridge servers.

• geph4-binder: central authentication server for Geph

• sosistab2: Geph transport protocol

• geph4-libs: helper libraries for shared functionality including the Mizaru authentication protocol

Page 7 of 42

Privileged and Confidential
Report

MEDIUM-RISK FINDINGS

M1: [binder] Passwords Cached in Plaintext

Description:

The Geph Binder service was found to store user passwords in plaintext. The purpose for doing so was to
cache them to avoid performing costly hashing on the server.

Impact:

An attacker who was able to access the server's memory or compromise a Binder server would be able to
access the plaintext credentials for up to 100,000 users who had logged in over the past hour.

Reproduction:

The password and authentication caches were defined in the file geph4-binder/src/bindercore_v2.rs, lines 88-
95:

 pwd_cache: Cache::builder()
 .time_to_live(Duration::from_secs(3600))
 .max_capacity(100000)
 .build(),
 auth_cache: Cache::builder()
 .time_to_live(Duration::from_secs(3600))
 .max_capacity(100000)
 .build(),

On lines 480-506 of the same file, the verify_password() function first checked the cache for the user's
plaintext password and compared it to the entered password, before computing a hash using libsodium if not.
Finally, on a successful login, the password was entered into the password cache.

 async fn verify_password(&self, username: &str, password: &str) -> anyhow::Result<bool> {
 if self
 .pwd_cache
 .get(username)
 .map(|known| known == password)
 .unwrap_or_default()
 {
 return Ok(true);
 }
 let mut txn = self.postgres.begin().await?;
 let (pwdhash,): (String,) = if let Some(v) =
 sqlx::query_as("select pwdhash from users where username = $1")
 .bind(username)
 .fetch_optional(&mut txn)
 .await?
 {
 v
 } else {
 return Ok(false);
 };
 if verify_libsodium_password(password.to_string(), pwdhash).await {
 self.pwd_cache.insert(username.into(), password.into());
 Ok(true)
 } else {
 Ok(false)
 }
 }

Page 8 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends designing the user authentication process such that plaintext passwords
do not need to be stored on the server. As the team presumes that the caching was added due to high CPU
load caused by hashing many user passwords, the team suggests an alternative solution would be to scale the
number of Binder servers.

A different solution would be to generating an authentication token that is relayed to a user and can be used
in place of credentials for a limited period.

References:

Libsodium Documentation - Password Hashing

M2: [bridge] No Binary Authentication in Auto Update

Description:

The Geph bridge code contained a routine to regularly auto-update the software. No cryptographic
authentication or integrity checks were applied to the binary which was automatically downloaded.

Impact:

An attacker that could replace the file on the external Backblaze file storage service would be able to cause all
Geph bridges to run arbitrary code. This would not be catastrophic for the Geph network since bridges are
untrusted relays, however at the very least it could lead to downtime across the network until resolved.

Reproduction:

The auto update procedure was found in the file geph4-bridge/src/autoupdate.rs, lines 6-31:

pub fn autoupdate() {
 let current_exe = std::env::current_exe().unwrap();
 loop {
 let pre_sha256 = system(format!(
 "sha256sum {} | awk '{{ print $1 }}'",
 current_exe.display()
));
 log::debug!("*** CURRENT SHA256: {} ***", pre_sha256);
 system("wget --retry-on-http-error 500 --retry-connrefused --waitretry=1 --read-timeout=20 --timeout=15 -t
0 https://f001.backblazeb2.com/file/geph-dl/geph4-binaries/geph4-bridge-linux-amd64 -O /tmp/new-geph4-
bridge".to_string());
 // first make sure it even runs
 system("chmod +x /tmp/new-geph4-bridge".into());
 if system("/tmp/new-geph4-bridge -h".into()).contains("information") {
 let post_sha256 = system("sha256sum /tmp/new-geph4-bridge | awk '{ print $1 }'".into());
 if pre_sha256 != post_sha256 {
 log::debug!("*** NEW SHA256: {} ***", post_sha256);
 log::debug!("** UPDATING!!!! **");
 system(format!(
 "mv /tmp/new-geph4-bridge {}",
 current_exe.display()
));
 panic!("die to update")
 }
 }
 std::thread::sleep(Duration::from_secs_f64(fastrand::f64() * 3600.0))
 }
}

https://libsodium.gitbook.io/doc/password_hashing

Page 9 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends cryptographically signing binary releases so that they can be validated to
originate from the Geph development team before being automatically downloaded and run.

Additionally, the team noted that the Geph bridge binary was a 15-megabyte download made about once
every 30 minutes on average by every bridge, regardless of whether a new version was released or not. Across
multiple bridges, this could lead to high bandwidth costs. This provides a justification for releasing a hash of an
updated binary (potentially on a separate channel) so that the full binary only needs to be downloaded if it
differs.

References:

Code Signing

M3: [Android] Application Executable Signed with v1 Signature Scheme (JANUS Vulnerability)

Description:

The assessment team found that the Geph Android application executable was signed with a v1 APK signature
at the time of assessment.

Using a v1 signature makes the application prone to the Janus vulnerability on devices running Android 7 or
below. The Janus vulnerability allows attackers to smuggle malicious code into the APK without breaking the
signature.

At the time of writing, the application supported a minimum SDK version of 21 (Android 5), which also uses
the v1 signature, thus being vulnerable to this attack. Android 5 devices no longer receive updates and are
vulnerable to many security concerns. It can be assumed that any installed malicious application may trivially
gain root privileges on those devices using public exploits.

Impact:

The existence of this vulnerability means that attackers could trick users into installing a malicious attacker
controlled APK which matches the v1 APK signature of the legitimate Android application. As a result, a
transparent update would be possible without warnings appearing on Android devices, effectively taking over
the existing application and all its data.

Reproduction:

The following snippet from the apksigner tool shows that the application supported the v1 signature scheme
at the time of assessment:

$ apksigner verify -v geph-android.apk
Verifies
Verified using v1 scheme (JAR signing): true
Verified using v2 scheme (APK Signature Scheme v2): true
Verified using v3 scheme (APK Signature Scheme v3): false
Verified using v3.1 scheme (APK Signature Scheme v3.1): false
Verified using v4 scheme (APK Signature Scheme v4): false
Verified for SourceStamp: false
Number of signers: 1

https://en.wikipedia.org/wiki/Code_signing

Page 10 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends increasing the minimum supported SDK level to at least 24 (Android 7) to
ensure that this vulnerability cannot be exploited on devices running older Android versions. In addition,
future production builds should be signed only with v2 or greater APK signatures.

References:

Janus Vulnerability

M4: [Android] [iOS] Daemon Commands Exposed to All Applications on Device

Description:

The Geph Android and iOS applications were found to expose an Inter-Process Communication (IPC)
mechanism that accepted commands from any application installed on the device. This design undermined the
Android and iOS security models, which normally restrict how processes communicate with each other, and
could expose users to additional risk from malicious applications installed on the device.

Impact:

A malicious application on the device could send commands to the Geph daemon to obtain information such
as the current IP address, port, or protocol. The attacker could also terminate the VPN connection on behalf of
the user, which could lead to deanonymization of the user's Internet activity in hostile environments.

Reproduction:

The following proof-of-concepts were created by leveraging the Drozer mobile security toolkit to install
busybox and wget on an Android device, allowing the assessment team to simulate a malicious application.

The following snippet shows it was possible to query metadata about the current tunnel, including IP address,
port, and protocol in use:

busybox wget -O- -q --post-data='{"jsonrpc":"2.0","method":"basic_stats","params":[],"id":1}' --header='Content-
Type: application/x-www-form-urlencoded' http://127.0.0.1:9809

{"jsonrpc":"2.0","result":{"address":"23.81.64.120:17814","last_loss":0.0,"last_ping":37.0,"protocol":"obfstls-
1","total_recv_bytes":4162600.0,"total_sent_bytes":1492982.0},"id":1}

The following snippet shows it was possible to query the service to confirm if a user was connected to a
tunnel:

busybox wget -O- -q --post-data='{"jsonrpc":"2.0","method":"is_connected","params":[],"id":1}' --header='Content-
Type: application/x-www-form-urlencoded' http://127.0.0.1:9809

{"jsonrpc":"2.0","result":true,"id":1}

The following command was used to terminate the VPN tunnel from another application:

busybox wget -O- -q --post-data='{"jsonrpc":"2.0","method":"kill","params":[],"id":1}' --header='Content-Type:
application/x-www-form-urlencoded' http://127.0.0.1:9809

https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures

Page 11 of 42

Privileged and Confidential
Report

The following snippet from file geph4-client/src/connect/stats.rs, lines 19-40, shows that adding
authentication to the RPC server was possible using the GEPH_RPC_KEY environment variable, however this
key was not set when the daemon was launched by the Android and iOS applications:

pub static STATS_THREAD: Lazy<JoinHandle<Infallible>> = Lazy::new(|| {
 std::thread::spawn(|| loop {
 let server = tiny_http::Server::http(CONNECT_CONFIG.stats_listen).unwrap();
 for mut request in server.incoming_requests() {
 smolscale::spawn(async move {
 if let Ok(key) = std::env::var("GEPH_RPC_KEY") {
 if !request.url().contains(&key) {
 anyhow::bail!("missing rpc key")
 }
 }
 let mut s = String::new();
 request.as_reader().read_to_string(&mut s)?;
 let resp = StatsControlService(DummyImpl)
 .respond_raw(serde_json::from_str(&s)?)
 .await;
 request.respond(tiny_http::Response::from_data(serde_json::to_vec(&resp)?))?;
 anyhow::Ok(())
 })
 .detach()
 }
 })
});

Recommended Remediation:

The assessment team recommends reconsidering the design of the mobile applications and using native IPC
mechanisms offered by those platforms rather than exposing the daemon RPC server on a TCP socket. iOS
offers IPC via application groups, which are already partially leveraged in the Geph iOS application, while
Android typically uses intents. These APIs allow controlled sharing of data between applications without
fundamentally undermining the security models of Android and iOS.

Alternatively, the RPC service could be launched with the GEPH_RPC_KEY populated to require
authentication, or the service could be removed entirely if applications outside of the main Geph application
do not legitimately need to interact with it.

References:

Apple Developer Documentation - Configuring App Groups
Android Developer Documentation - Security Tips - Interprocess Communication

M5: [Android] Security Relevant User Data Stored in Clear Text

Description:

The assessment team found that the application stored the user's username, plaintext password, and recently
used exit servers within the shared preferences file.

The SharedPreferences API is commonly used to permanently save small collections of key-value pairs. Data
stored in a SharedPreferences object is written to a cleartext XML file. It is possible to set the
SharedPreferences file to be globally readable, making it accessible to all applications on the device.

https://developer.apple.com/documentation/xcode/configuring-app-groups
https://developer.android.com/training/articles/security-tips

Page 12 of 42

Privileged and Confidential
Report

Impact:

Misuse of the SharedPreferences API can often lead to disclosure of confidential data. In this case, an attacker
who obtains access to the device could extract the account credentials and conduct further targeted attacks
against this user. Knowledge of the account and exit server could also help sophisticated attackers, such as
nation states, trace activity back to users.

Reproduction:

The following steps can be used to confirm this finding.

1. Install the application on a rooted device.
2. Navigate to the /data/data/io.geph.android/shared_prefs folder and open the daemon.xml file:

blueline:/data/data/io.geph.android # cat shared_prefs/daemon.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <boolean name="listenAll" value="true" />
 <string name="password">[REDACTED]</string>
 <boolean name="forceBridges" value="false" />
 <string name="excludeAppsJson">[]</string>
 <string name="dnsServerPort">49983</string>
 <string name="socksServerAddress">127.0.0.1</string>
 <string name="forceProtocol">null</string>
 <string name="socksServerPort">9909</string>
 <string name="username">Incsectest1</string>
 <string name="exitName">2.mtl.ca.ngexits.geph.io</string>
</map>

The following snippet from the file app/src/main/java/io/geph/android/MainActivity.kt, line 457, shows that
the username, password, and other information are recorded using the SharedPreferences API when the
tunnel service is started:

 protected fun startTunnelService(context: Context?) {
 Log.i(TAG, "starting tunnel service")
 val startTunnelVpn = Intent(context, TunnelVpnService::class.java)
 Log.d(TAG, "*** GONNA SET PREFERENCES *** "+ (context == null).toString())
 val prefs = context!!.getSharedPreferences("daemon", Context.MODE_PRIVATE);
 Log.d(TAG, "*** REALLY GONNA SET PREFERENCES *** ")
 with (prefs.edit()) {
 putString(TunnelManager.SOCKS_SERVER_ADDRESS_BASE, mSocksServerAddress)
 putString(TunnelManager.SOCKS_SERVER_PORT_EXTRA, mSocksServerPort)
 putString(TunnelManager.DNS_SERVER_PORT_EXTRA, mDnsServerPort)
 putString(TunnelManager.USERNAME, mUsername)
 putString(TunnelManager.PASSWORD, mPassword)
 putString(TunnelManager.EXIT_NAME, mExitName)
 Log.d(TAG, "*** mForceBridges *** " + mForceBridges.toString())
 putBoolean(TunnelManager.FORCE_BRIDGES, mForceBridges!!)
 Log.d(TAG, "*** mListenAll *** " + mListenAll.toString())
 putBoolean(TunnelManager.LISTEN_ALL, mListenAll!!)
 putString(TunnelManager.FORCE_PROTOCOL, mForceProtocol)
 putString(TunnelManager.EXCLUDE_APPS_JSON, mExcludeAppsJson)
 commit()
 }

 Log.d(TAG, "*** SET PREFERENCES ***")

 if (startService(startTunnelVpn) == null) {
 Log.d(TAG, "failed to start tunnel vpn service")
 return
 }
 TunnelState.getTunnelState().setStartingTunnelManager()
 }

Page 13 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends implementing Android KeyStore, which supports secure credential storage
as of Android version 4.3 (API level 18). It provides public APIs for storing and using app-private keys. An
application can use a public key to create a new private/public key pair for encrypting application secrets, and
it can decrypt the secrets with the private key.

It's possible to protect keys stored in the Android KeyStore with user authentication in a credential flow. The
user's lock screen credentials (e.g., PIN, Credentials, or fingerprint) could be used for authentication.

References:

OWASP MSTG Data Storage
OWASP MSTG - ANDROID KEYSTORE

M6: [client] Time-Based Client Deanonymization

Description:

The Geph homepage says “we don't log you — because we can't. We use zero-knowledge authentication so
that we can never associate your browsing activity with your identity”. This refers to the Mizaru blind
signature scheme that the Binder uses for giving authentication tokens to users. A description of the scheme is
given in the Protocol and Cryptography Review section. In practice, deanonymization is easier than claimed.

Impact:

If the reality of the protocol does not match the security claims on the site, this could lead to reputational
damage. If an outside agency were to gain access to Geph binder infrastructure or compel the operators to
identify users, it could be possible to deanonymize them.

On the GitHub wiki, it is stated that “Geph is optimized for confidentiality, performance, and censorship
circumvention rather than anonymity against strong network adversaries.” The statement on the homepage
may give users a false sense of security relating to anonymity.

Reproduction:

Practical deanonymization was possible with the binder, since directly after issuing a client a blind token from
the binder, the client needs to make a second request to get exits and bridge descriptors from the binder.

For instance, in the get_closest_exit() function in the file geph4-protocol/src/binder/client.rs, lines 71-73,
includes calls get_auth_token():

 pub async fn get_closest_exit(&self, destination_exit: &str) -> anyhow::Result<ExitDescriptor> {
 let token = self.get_auth_token().await?.1;
 let summary = self.get_summary().await?;

If not already cached, get_auth_token() will send the user's authentication data to the binder, in exchange for
a blind token. The purpose of the Mizaru blind signature scheme is to break the link between the
authentication details and the token. However, in the get_summary() function, the client immediately makes
another request to the binder using the blind token. It would therefore be possible for the binder to store a
mapping of authentication details to tokens just based on timing linkage. Time-based client deanonymization
is described in section 8.4 of the Privacy Pass paper, which is a similar protocol to Mizaru.

The Geph team noted some mitigating factors after the draft report was delivered. The client caches tokens
for 24 hours and refreshes them when they expire meaning that clients do not authenticate too often.

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md#keystore
https://github.com/geph-official/geph4-client/wiki/How-Geph-works
https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf

Page 14 of 42

Privileged and Confidential
Report

Further, the large amount of traffic that Geph servers receive means that there will likely be intervening
requests between the authentication and subsequent requests by the same user, making linkage somewhat
less trivial.

Recommended Remediation:

The assessment team recommends changing the wording of the homepage so that the security properties of
the Mizaru protocol are more accurately represented, since out-of-band deanonymization is difficult to
mitigate.

References:

Privacy Pass: Bypassing Internet Challenges Anonymously

M7: [client] Client Did Not Validate Mizaru Keys

Description:

The Geph homepage refers to Mizaru as a “zero-knowledge authentication” scheme. However, the scheme is
not technically zero-knowledge, and this can be shown straightforwardly as the client does not validate Mizaru
public keys.

Impact:

If the reality of the protocol does not match the security claims on the site, this could lead to reputational
damage. If an outside agency were to gain access to Geph binder infrastructure or compel the operators to
identify users, it could be possible to deanonymize them.

Reproduction:

The binder could send connecting clients a different Mizaru keypair for every authentication. Then, the binder
server could link identities by checking which key had been used in the validation step.

It appeared that steps had been taken to prevent this form of attack on the client by hardcoding Mizaru
Merkle tree roots into the client config contained in geph4-client/src/config.rs, however in practice these
were not used. In get_auth_token() (line 149), the get_mizaru_pk() function is called, which fetches the key
from the binder:

 /// Obtains an authentication token.
 pub async fn get_auth_token(&self) -> anyhow::Result<(UserInfo, BlindToken)> {
 if let Some(auth_token) = (self.load_cache)("auth_token") {
 if let Ok(auth_token) = serde_json::from_slice(&auth_token) {
 return Ok(auth_token);
 }
 }
 let digest: [u8; 32] = rand::thread_rng().gen();
 for level in [Level::Free, Level::Plus] {
 let mizaru_pk = self.get_mizaru_pk(level).await?;

Recommended Remediation:

The assessment team recommends that the client checks the Mizaru public keys from the binder against the
Merkle roots stored in the config to validate that the keys are part of the Merkle tree.

References:

Privacy Pass: Bypassing Internet Challenges Anonymously

https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf

Page 15 of 42

Privileged and Confidential
Report

LOW-RISK FINDINGS

L1: [client] Registration Captcha Bypass

Description:

The Geph user registration process required solving a captcha. There were multiple approaches which could
circumvent this captcha validation.

Impact:

A captcha bypass could be used as part of a denial-of-service attack against the Geph network, either to
exhaust the resources of the binder server, or to overwhelm the network with too much traffic.

Reproduction:

In the first instance, the team noted that the captcha generated was not complex. The following script, using
the tesseract library for image-to-text, could be used to produce correct answers:

from PIL import Image
from pytesseract import pytesseract
import io
import numpy as np

with open('img.png', 'rb') as f:
 data = f.read()

img = Image.open(io.BytesIO(data)).convert('L')

import cv2
ret,img = cv2.threshold(np.array(img), 0, 255, cv2.THRESH_BINARY)
img = cv2.blur(np.array(img), (5,5))
img = Image.fromarray(img.astype(np.uint8))

img.show()

text = pytesseract.image_to_string(img, config='--psm 6 -c tessedit_char_whitelist=0123456789')
print(text)

The team also observed that once solved, captchas did not expire. Therefore, a registration request could
reuse a captcha solution that had previously been used. Although the team did not have access to the source
code of the captcha service, it was observed that captchas used at the beginning of the assessment were still
valid two weeks later. This would bypass the need to solve any captchas when mass registering accounts.

Page 16 of 42

Privileged and Confidential
Report

Captchas were consumed in the create_user() function of geph4-binder/src/bindercore_v2.rs file:

 /// Creates a new user, consuming a captcha answer.
 pub async fn create_user(
 &self,
 username: &str,
 password: &str,
 captcha_id: &str,
 captcha_soln: &str,
) -> anyhow::Result<Result<(), RegisterError>> {
 // // EMERGENCY
 // return Ok(Err(RegisterError::Other("too many requests".into())));
 if !verify_captcha(&self.captcha_service_url, captcha_id, captcha_soln).await? {
 log::debug!("{} is not soln to {}", captcha_soln, captcha_id);
 return Ok(Err(RegisterError::Other("incorrect captcha".into())));
 }

Recommended Remediation:

The assessment team recommends increasing the complexity of captchas so they cannot easily be defeated by
off-the-shelf Python libraries. Additionally, captchas should expire once solved.

References:

Breaking Simple Captchas with Tesseract OCR and OpenCV in Python

L2: [binder] Password Complexity Policy Does Not Follow Industry Guidelines

Description:

Password complexity policies require users to select passwords that conform to specific complexity
requirements to make it more difficult for attackers to guess them using brute force attacks. In this case, Geph
was found not to require users to select passwords that meet industry guidelines for complexity requirements.

Impact:

Users could select passwords that could be easily guessed by attackers, which would allow them to
compromise the targeted users' accounts. In the context of Geph, this has limited impact, as access to a user's
account should not expose their browsing history. Still, this could incentivize attackers to compromise
premium users' accounts.

Reproduction:

The following code from the file geph4-binder/src/bindercore_v2.rs, lines 187-217, show the user registration
function:

 /// Creates a new user, consuming a captcha answer.
 pub async fn create_user(
 &self,
 username: &str,
 password: &str,
 captcha_id: &str,
 captcha_soln: &str,
) -> anyhow::Result<Result<(), RegisterError>> {
 // // EMERGENCY
 // return Ok(Err(RegisterError::Other("too many requests".into())));
 if !verify_captcha(&self.captcha_service_url, captcha_id, captcha_soln).await? {
 log::debug!("{} is not soln to {}", captcha_soln, captcha_id);
 return Ok(Err(RegisterError::Other("incorrect captcha".into())));
 }
 // TODO atomicity

https://parzelsec.de/posts/breaking-simple-captchas-in-python

Page 17 of 42

Privileged and Confidential
Report

 if self.get_user_info(username).await?.is_some() {
 return Ok(Err(RegisterError::DuplicateUsername));
 }
 let mut txn = self.postgres.begin().await?;
 sqlx::query(
 "insert into users (username, pwdhash, freebalance, createtime) values ($1, $2, $3, $4) on conflict do
nothing",
)
 .bind(username)
 .bind(hash_libsodium_password(password).await)
 .bind(1000i32)
 .bind(Utc::now().naive_utc())
 .execute(&mut txn)
 .await?;
 txn.commit().await?;
 Ok(Ok(()))
 }

As shown, there is no code for setting password strength. This was confirmed in practice by registering an
account with the credentials test1048123:a:

Recommended Remediation:

The assessment team recommends enforcing a more complex password policy on the server. For example,
OWASP defines the following guidelines for complexity rules:

Page 18 of 42

Privileged and Confidential
Report

A password should satisfy at least 3 of 4 complexity rules:

• at least 1 uppercase character (A-Z)

• at least 1 lowercase character (a-z)

• at least 1 digit (0-9)

• at least 1 special character (punctuation), including space.

Additionally, the team recommends requiring that all passwords be at least 10 characters long. For
applications containing confidential data or with stricter security requirements, consider a minimum of 12
characters.

Finally, ensure that passwords are not easily guessable (e.g., identical to a user's username), and do not
include more than two identical characters in a row (so 111 should not be accepted).

References:

OWASP Authentication Cheatsheet: Password Strength Controls

L3: [binder] Public Captcha Endpoint

Description:

Geph users had to solve a captcha to register an account. The backend captcha service was found to be
publicly exposed on the Internet.

Impact:

In this case, public access was not required since captcha requests were proxied through Binder which was
also controlled by Geph. Direct access to backend services could allow attackers to find vulnerabilities, as well
as to simplify brute-force registration attacks by attacking endpoints that are not rate-limited directly (see
[client] Registration Captcha Bypass).

Reproduction:

For example, the /solve endpoint of the Captcha service, hosted on Appspot, could be called directly.

Request:

GET /solve?id=fcofRN4ac8hXInJhukU6&soln=12658357 HTTP/2
Host: single-verve-156821.ew.r.appspot.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110
Safari/537.36
Accept: */*

Response:

HTTP/2 200 OK
X-Cloud-Trace-Context: 7c2e673b60717bd11eb23e0370367e81;o=1
Date: Wed, 18 Jan 2023 01:43:00 GMT
Content-Type: text/html
Server: Google Frontend
Content-Length: 0
Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":443"; ma=2592000,h3-
Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls

Page 19 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends firewalling off backend services that do not need to be externally exposed.

References:

OWASP API security – 7: Security misconfiguration

L4: [Android] Application Allows Backups

Description:

The Geph Android application was configured to allow backups at the time of assessment. Application backups
may contain security relevant or confidential data such as user credentials, authentication tokens, or personal
information.

Impact:

Allowing application backups enables an attacker with access to a device to extract application data from the
backup file, which in this case would include usernames, plaintext passwords, unblinded keys and recently
used bridge servers. The attacker could use this information to conduct further attacks against the targeted
user, particularly if the credentials were re-used for other services.

Reproduction:

The following snippet from the file app/src/main/AndroidManifest.xml shows that Android backups were
enabled for the Geph application:

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:usesCleartextTraffic="true"
 android:theme="@style/AppTheme">

Recommended Remediation:

The assessment team recommends disallowing backups for any Android applications that contain security
relevant or confidential information in the application data directory. This can be achieved by setting the
following directive in the application manifest:

android:allowBackup="false"

Additionally, the assessment team recommends storing security relevant information in the Android Keystore
instead of the shared preferences file. This would prevent credentials from being included in backups and
make it more difficult in general to extract this data.

References:

OWASP Mobile Application Security Testing Guide - Backups
Android Keystore

https://tyk.io/blog/res-owasp-api-security-7-security-misconfiguration/
https://mas.owasp.org/MASTG/Android/0x05d-Testing-Data-Storage/#backups
https://developer.android.com/training/articles/keystore

Page 20 of 42

Privileged and Confidential
Report

L5: [Android] [iOS] Native Code Not Compiled with Stack Canary Exploit Mitigation

Description:

The Geph Android and iOS applications included native ARM executables that were not compiled with stack
canary exploit mitigation. This feature helps reduce the impact of stack-based memory corruption
vulnerabilities by inserting values onto the stack that are verified when the function returns. The program
then aborts if the canary has changed, which indicates memory corruption has occurred.

Impact:

An attacker who has identified a stack-based memory corruption vulnerability in the mobile applications could
more easily exploit it to achieve memory disclosure or remote code execution depending on application
internals.

Reproduction:

The assessment team extracted the production APK and iOS applications and leveraged the checksec tool to
verify compiler mitigations on the native executables included with these builds. The following snippet shows
that stack canary protection is disabled on the 32 and 64 bit builds of libjnidispatch.so included with the
Android application:

$ /apk/lib/arm64-v8a$ checksec libjnidispatch.so
[*] 'apk/lib/arm64-v8a/libjnidispatch.so'
 Arch: aarch64-64-little
 RELRO: Full RELRO
 Stack: No canary found
 NX: NX enabled
 PIE: PIE enabled
$ /apk/lib/armeabi-v7a$ checksec libjnidispatch.so
[*] 'apk/lib/armeabi-v7a/libjnidispatch.so'
 Arch: arm-32-little
 RELRO: Full RELRO
 Stack: No canary found
 NX: NX enabled
 PIE: PIE enabled

The main Geph executable in the iOS build was also affected, as shown in the following snippet from the file
/private/var/containers/Bundle/Application/CF4F7810-DDE2-4686-B2F5-D9FBB4A5D79E/Geph.app/Geph:

$ checksec -f Geph
MachO64: | ARC: false Canary: false Code Signature: true Encrypted: false Fortify: true Fortified: 4 NX Heap:
false NX Stack: true PIE: true Restrict: false RPath: true

Recommended Remediation:

The assessment team recommends adding stack canary protection to the existing exploit mitigations on all
native executables. For Android, compiler and linker options (including -fstack-protector-all) can be added to
Android.mk and Application.mk files which are processed by the NDK when the application is compiled. For
iOS, these options can be added to XCode under “Other C Flags” in the project build settings.

References:

checksec.rs
OWASP Mobile Application Security Testing Guide - XCode Project Settings
Stack Canaries

https://github.com/etke/checksec.rs
https://mas.owasp.org/MASTG/iOS/0x06i-Testing-Code-Quality-and-Build-Settings/#xcode-project-settings
https://lettieri.iet.unipi.it/hacking/canaries.pdf

Page 21 of 42

Privileged and Confidential
Report

L6: [client] Non-Encrypted HTTP request

Description:

The assessment team noted that some HTTP requests in Geph libraries did not use the HTTPS protocol.

Impact:

Information traveling in cleartext is susceptible to Man-in-the-Middle (MitM) Attacks, in which data is
intercepted by an attacker with access anywhere along the network path between the user and the target
server. In this case, a network-level attacker could replace an IP address with one of their own, causing Geph
clients to connect to attacker-controlled infrastructure. However, the full implications of this were not
explored during the assessment since the team could not dynamically test with a binder server.

The following instances were noted:

File Line(s)

geph4-bridge/src/main.rs 325
geph4-client/src/china/mod.rs 54,56
geph4-exit/src/asn.rs 41

Reproduction:

For instance, in the file geph4-exit/src/asn.rs, lines 39-47, the Geph exit servers obtained their own IP
addresses by contacting Amazon AWS over HTTP:

/// my own IP address
pub static MY_PUBLIC_IP: Lazy<Ipv4Addr> = Lazy::new(|| {
 let resp = ureq::get("http://checkip.amazonaws.com").call();
 resp.into_string()
 .expect("cannot get my public IP")
 .trim()
 .parse()
 .expect("got invalid IP address for myself")
});

The IP address returned was then used when uploading a bridge descriptor to the binder in the file geph4-
exit/src/listen.rs, lines 517-530:

 // Upload a "self-bridge". sosistab2 bridges have the key field be the bincode-encoded pair of bridge
key and e2e key
 let mut _task = None;
 if let Some(client) = ctx.binder_client.clone() {
 let ctx = ctx.clone();
 _task = Some(smolscale::spawn(async move {
 loop {
 let fallible = async {
 let mut unsigned_udp = BridgeDescriptor {
 is_direct: true,
 protocol: "sosistab2-obfsudp".into(),
 endpoint: SocketAddr::new(
 (*MY_PUBLIC_IP).into(),
 listen_addr.port(),
),

Page 22 of 42

Privileged and Confidential
Report

Recommended Remediation:

The assessment team recommends that all transport is encrypted including use of TLS for confidentiality and
authentication across all HTTP requests.

References:

Transport Layer Protection Cheat Sheet

L7: [Android] Main Activity Configuration Enables Task Hijacking on Older Versions of Android

Description:

The assessment team found that launchMode for the app-launcher activity was set to singletop, which
mitigates task hijacking via the StrandHogg exploit and other older techniques documented since 2015, while
leaving the app vulnerable to the newer StrandHogg 2.0 exploit.

StrandHogg exploits a design flaw in the multitasking system of Android to enable malicious applications to
masquerade as any other application on the device.

This vulnerability affects Android versions 3-9.x but was patched by Google in Android 8 – 9. Since the
application supports devices as old as Android 5 (API level 21), this leaves users running Android 5-7.x
vulnerable, as well as users running unpatched Android 8-9.x devices.

Impact:

A malicious application could leverage this vulnerability to manipulate the way in which users interact with the
Geph application. More specifically, this would be instigated by relocating a malicious attacker-controlled
activity in the screen flow of the user, which may be useful to perform Phishing and Denial-of-Service attacks
or capturing user-credentials. Strandhogg has been successfully exploited by high profile banking malware
trojans in the past.

Reproduction:

The following snippet from the file app/src/main/AndroidManifest.xml, lines 17-29, shows that the
launchMode setting is set to singleTop, potentially enabling Standhogg 2.0 exploits:

 <activity
 android:exported="true"
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:launchMode="singleTop"
 android:screenOrientation="portrait"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Recommended Remediation:

The assessment team recommends implementing the following countermeasures:

• The task affinity of exported application activities should be set to an empty string in the Android
manifest. This will force the activities to use a randomly generated task affinity instead of the package
name and prevent task hijacking, as malicious apps will not have a predictable task affinity to target.

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

Page 23 of 42

Privileged and Confidential
Report

• The launchMode should be changed to singleInstance (instead of singleTop).

• A custom onBackPressed() function could be implemented to override the default behavior.

• The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If deemed required, one
should use the aforementioned in combination with the FLAG_ACTIVITY_CLEAR_TASK flag.

References:

Android Developer Documentation - android:launchMode
StrandHogg
StrandHogg 2.0
Android Task Hijacking
Android phones under active attack by bank thieves
StrandHogg PoC

L8: Out-of-Date Libraries in Use

Description:

Geph was found to use outdated Rust libraries which are affected by publicly known vulnerabilities.

Impact:

The assessment team found a number of libraries used by the application to be out of date. These
components have publicly known vulnerabilities, and an attacker who discovers out-of-date software within
the application could use them to focus exploit attempts. Note that these vulnerabilities require very specific
conditions to be exploitable; the extent to which the out-of-date components can be exploited depends
largely on how these libraries are used within the application.

The following table lists out-of-date components with known vulnerabilities which were found during
assessment, listed by subproject:

geph4-binder

Packag
e

Description Severity Curren
t
Versio
n

Patched
Versions

time Potential segfault in
the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A
:H

0.1.43 >=0.2.23

tokio reject_remote_client
s Configuration
corruption

None 1.23.0 >=1.18.4,
<1.19.0,>=1.20.
3,
<1.21.0,>=1.23.
1

https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://www.slideshare.net/phdays/android-task-hijacking
https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://github.com/az0mb13/Task_Hijacking_Strandhogg

Page 24 of 42

Privileged and Confidential
Report

geph4-bridge

Package Description Severity Curren
t
Versio
n

Patched
Versions

chrono Potential segfault
in `localtime_r`
invocations

None 0.4.19 >=0.4.20

regex Regexes with large
repetitions on
empty sub-
expressions take a
very long time to
parse

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:
N/A:H

1.5.4 >=1.5.5

thread_local Data race in `Iter`
and `IterMut`

None 1.1.3 >=1.1.4

time Potential segfault
in the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N
/A:H

0.1.43 >=0.2.23

tokio reject_remote_clie
nts Configuration
corruption

None 1.20.1 >=1.18.4,
<1.19.0,>=1.20.
3,
<1.21.0,>=1.23.
1

zeroize_deri
ve

zeroize(drop)
doesn't implement
`Drop` for `enum`s

None 1.1.0 >=1.1.1

geph4-client

Packag
e

Description Severity Curren
t
Versio
n

Patched
Versions

rustc-
serializ
e

Stack overflow in
rustc_serialize when
parsing deeply
nested JSON

None 0.3.24

time Potential segfault in
the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:
H

0.1.45 =0.2.23

tokio reject_remote_client
s Configuration
corruption

None 1.23.0 =1.18.4,
1.19.0,=1.20.3
,
1.21.0,=1.23.1

Page 25 of 42

Privileged and Confidential
Report

geph4-exit

Packag
e

Description Severity Curren
t
Versio
n

Patched
Versions

time Potential segfault in
the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:
H

0.1.43 =0.2.23

tokio reject_remote_client
s Configuration
corruption

None 1.23.0 =1.18.4,
1.19.0,=1.20.3
,
1.21.0,=1.23.1

geph4-libs

Package Description Severity Current
Version

Patched
Versions

time Potential segfault in
the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 0.1.45 =0.2.23

geph4-protocol

Package Description Severity Current
Version

Patched
Versions

time Potential segfault in
the time crate

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 0.1.45 =0.2.23

gephgui-wry

Package Description Severity Current
Version

Patched
Versions

chrono Potential segfault in
`localtime_r`
invocations

None 0.4.19 =0.4.20

regex Regexes with large
repetitions on
empty sub-
expressions take a
very long time to
parse

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 1.5.4 =1.5.5

rust-embed RustEmbed
generated `get`
method allows for
directory traversal
when reading files
from disk

None 6.2.0 =6.3.0

thread_local Data race in `Iter`
and `IterMut`

None 1.1.3 =1.1.4

Page 26 of 42

Privileged and Confidential
Report

Reproduction:

The following snippet from cargo audit shows that the version of chrono library in use was 0.4.19:

geph4-bridge$ cargo audit
 Fetching advisory database from `https://github.com/RustSec/advisory-db.git`
 Loaded 488 security advisories (from /home/kali/.cargo/advisory-db)
 Updating crates.io index
 Scanning Cargo.lock for vulnerabilities (348 crate dependencies)
Crate: chrono
Version: 0.4.19
Title: Potential segfault in `localtime_r` invocations
Date: 2020-11-10
ID: RUSTSEC-2020-0159
URL: https://rustsec.org/advisories/RUSTSEC-2020-0159
Solution: Upgrade to >=0.4.20
Dependency tree:
chrono 0.4.19
└── simple_asn1 0.4.1
 └── rsa 0.3.0
 ├── rsa-fdh 0.5.0
 │ ├── mizaru 0.1.3
 │ │ └── geph4-binder-transport 0.2.0
 │ │ └── geph4-bridge 0.1.0
 │ └── geph4-binder-transport 0.2.0
 ├── mizaru 0.1.3
 └── geph4-binder-transport 0.2.0

Recommended Remediation:

The assessment team recommends updating all out-of-date components to their most recent releases. If this
is not possible, the assessment team recommends updating all dependencies to at least the earliest version
that addresses all publicly known vulnerabilities.

References:

Cargo Audit

L9: [ui] User Credentials Exposed to All Processes

Description:

The Geph GUI application launched the geph4-client in a way that revealed user credentials on the process
command line.

Impact:

Low-privileged users on multi-user systems would be able to view and extract the credentials of a Geph user
on the system.

Reproduction:

The process tree shown in this reproduction was from a Linux system running the Flatpak release of Geph.
gephgui-wry spawned an instance of geph4-client with the command line arguments for username and
password visible:

user 398659 4.5 0.9 104679780 78404 pts/2 Sl+ 20:22 0:02 | _ gephgui-wry
user 398695 2.4 0.6 87337036 52744 pts/2 SLl+ 20:22 0:01 | _ /usr/libexec/webkit2gtk-
4.0/WebKitNetworkProcess 7 25
user 398701 9.4 2.4 87893588 201444 pts/2 SLl+ 20:22 0:04 | _ /usr/libexec/webkit2gtk-
4.0/WebKitWebProcess 11 15
user 399132 0.1 0.0 7740 3848 pts/2 S+ 20:23 0:00 | _ /bin/bash /app/bin/pkexec

https://crates.io/crates/cargo-audit

Page 27 of 42

Privileged and Confidential
Report

geph4-client connect --username Aas2d3 --password Adasd --exit-server 1.tor.ca.ngexits.geph.io --v
pn-mode tun-route
user 399138 0.0 0.0 158412 4900 pts/2 Sl+ 20:23 0:00 | _ flatpak-spawn --host
pkexec /home/user/.geph-blobs/geph4-client connect --username Aas2d3 --password [REDACTED] --exit-
server
 1.tor.ca.ngexits.geph.io --vpn-mode tun-route

The code that setup these command-line arguments was found in the file gephgui-wry/src/daemon.rs, lines
50-64:

impl DaemonConfig {
 /// Starts the daemon, returning a death handle.
 pub fn start(self) -> anyhow::Result<std::process::Child> {
 let common_args = Vec::new()
 .tap_mut(|v| {
 v.push("--username".to_string());
 v.push(self.username.clone());
 v.push("--password".into());
 v.push(self.password.clone());
 v.push("--exit-server".into());
 v.push(self.exit_hostname.clone());
 if let Some(force) = self.force_protocol.clone() {
 v.push("--force-protocol".into());
 v.push(force);
 }

Recommended Remediation:

The assessment team recommends using an alternate mechanism to pass credentials to the client that does
not involve displaying credentials on the command line. This could be via a UNIX pipe, environmental variable,
or a configuration file that other users do not have permission to read. This would be favored in place of argv
process introspection and sanitization.

References:

How to Handle Secrets on the Command Line

https://smallstep.com/blog/command-line-secrets/

Page 28 of 42

Privileged and Confidential
Report

INFORMATIONAL FINDINGS

I1: [Android] Network Security Configuration Allows Cleartext Communication to Servers in Older
Versions of Android

Description:

The Geph Android application did not include a Network Security Configuration. As a result, the default values
for network security options from the Android OS where the application was installed were used.

The default configuration for versions below Android 9 (API level 28) allows the application to communicate
with servers in cleartext.

Impact:

Users with the application installed on Android 8.1 or lower are susceptible to a protocol downgrade attack, or
to a Man-in-the-Middle (MitM) attack if the attacker has a way to force the application to navigate to a
desired URL.

Note that in this case, the only HTTP traffic observed was between services running locally on the device, so
the risk is considered nominal. This finding could present a risk if future code changes or other vulnerabilities
cause the Geph application to communicate with remote servers over HTTP, so the assessment team has
reported this finding for Informational purposes.

Reproduction:

This finding was observed by auditing the source code of the Geph Android application as well as the
production APK and noting the absence of the res/xml/network_security_config.xml file.

Recommended Remediation:

The assessment team recommends adding a Network Security Configuration file with the
cleartextTrafficPermitted=“false” directive. Exceptions can be added if required.

References:

Network Security Config

https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted

Page 29 of 42

Privileged and Confidential
Report

PROTOCOL AND CRYPTOGRAPHY REVIEW

Protocol, Cryptography, and Architecture Overview

Geph introduces several new cryptographic protocols:

• Binder Protocol – used between binder and all other Geph components in order to authenticate or
retrieve and update network topology data.

• Mizaru – used between the client and the binder in order to obtain an authentication token that has
no link to the user's credentials.

• Sosistab2 – the encryption and obfuscation protocol which wraps forwarded traffic.

Generally, these protocols build on modern and audited primitives. An important point about the architecture
is that the binder servers are run by Geph and considered trusted – malicious behavior from these servers
would break core trust assumptions of the network since they store a list of all users, exit servers, bridges, and
associated cryptographic material. This is similar to exit servers: they are operated by Geph and contain keys
that allow them to alter the topology of the network.

However, the threat model is not too straightforward as the Mizaru blind signature authentication protocol is
designed to hide client identities from the binder (if just hiding identities from exit servers was desired, the
scheme would not be necessary and the binder could just sign random tokens and hand those out to clients).
The scheme aims to prevent accidental linkage of identities to traffic, or deanonymization of past sessions
should the binder be compromised.

Meanwhile, the main job of the Binder protocol and Sosistab2 is to encrypt, authenticate, and obfuscate
traffic to protect from network-level attackers.

Binder Protocol
The binder protocol is used in a number of network interactions as listed in the threat model. For instance,
Geph clients initially connect to the binder by sending an authentication request using this protocol (via
domain fronting). All clients have the hard-coded “master” public key of the binder, and when communicating
with the binder, send an ephemeral public key followed by an encrypted serialized message. Keys are used in a
x25519 Diffie Hellman key exchange to obtain a shared secret. ChaCha20Poly1305 encryption is then used,
with a zero nonce, however a new ephemeral key was generated for every message. The main concern with
the protocol is if the “master” secret key of the binder is ever compromised. Not only would it be difficult to
update clients that have the hardcoded master public key; past captured messages could be decrypted since
only one side of the key exchange uses ephemeral keys.

Mizaru
Mizaru is a cryptographic scheme designed to increase the privacy of users from Geph infrastructure. As part
of the scheme, 65536 (2**16) RSA keypairs are generated on the binder server, one for each day after the
UNIX epoch. A Merkle tree is created from hashes of the public keys. The RSA keys are used as part of a Full
Domain Hash blind signature scheme. The majority of the code is located at geph4-libs/mizaru/src/keypair.rs.

When a user authenticates to the binder, they generate a string of random bytes and create a full domain
hash digest from it. They then blind that digest and send it to the binder as part of the standard authentication
procedure; the binder uses its daily Mizaru private key to blind sign the digest. The client receives the blinded
signature back, verifies, and unblinds it. The user now has an authentication token, permitting either “free” or
“plus” use of the service for up to 24 hours, with a signature from the binder, yet the binder did not see that
token during the authentication process. The binder server verifies these tokens by checking the epoch,

https://en.wikipedia.org/wiki/Full_Domain_Hash
https://en.wikipedia.org/wiki/Full_Domain_Hash

Page 30 of 42

Privileged and Confidential
Report

ensuring that the used public key hash is in the correct position of the Merkle tree, and that the public key
verifies the unblinded signature. The client- and server-side aspects of the protocol are implemented at
geph4-protocol/src/binder/client.rs and geph4-binder/src/bindercore_v2.rs.

This authentication process is similar to the Privacy Pass framework proposed by Cloudflare. In practice, this
protocol does have the problem of time-based client deanonymization, which is described in section 8.4 of the
Privacy Pass paper and in the finding [client] Time-Based Client Deanonymization.

The assessment team observed that the third-party RSA-FDH library was used correctly according to its API
docs. The assessment assumes that the library itself provides a secure and correct implementation of the
scheme and notes that the library was not requested to be in scope for security audit.

Sosistab2 Symmetric Encryption
The Sosistab2 protocol relies on two symmetric schemes, NonObfsAead and ObfsAead. Both are based on
ChaCha20-Poly1305. The main difference between them is that NonObfsAead does not hide the fact that it is
encrypted data since it uses a sequentially consistent nonce, where ObfsAead uses a random nonce to
obfuscate the encrypted payload. In NonObfsAead, only the first 8 bytes of a 12 byte nonce are used to form a
u64 counter, which does decrease the entropy of nonces, but this should be sufficient in practice.

Sosistab2 Key Exchanges
Sosistab2 key exchanges are made between the Geph client and an exit server. Somewhat confusingly, there
are actually two different key exchanges here at two different layers of the protocol, Obfuscated pipes and
Multiplex. Obfuscated pipes are concerned with bypassing censorship and Multiplex is the higher layer, which
has its own authenticated encryption but isn't concerned about obfuscation. A solid set of cryptographic
primitives are used, with x25519 keypairs, Blake3 hashes and the AEAD ciphers described above. Where
appropriate, labelling of keys derived via Blake3 hashes is used to prevent reuse of keys in the wrong context.

Sosistab2 Obfuscated Pipes
Obfuscated pipes (ObfsTlsPipe and ObfsUdpPipe) are the underlying layer which encrypt and obfuscate
packets in such a way that they should not be distinguishable as Geph traffic. The Obfuscated pipe interface
makes no promise about any security properties other than bypassing censorship (e.g. ObfsTlsPipe in practice
uses unauthenticated self-signed TLS certs). Obfuscated pipes use the ObfsAead symmetric cipher to disguise
the handshake as random bytes. Note that the key for the ObfsAead handshake encryption is derived on the
exit server from the current time and a bridge-specific key (geph4-exit/src/listen/control.rs line 186). This
appears to have been designed to make active-probing of bridges difficult, but note that a sufficiently-
resourced network-level attacker which actively made legitimate Geph connections using all circuits could
learn all such keys and would be able to deobfuscate captured handshake traffic made to these bridges. Active
man-in-the-middle of application traffic sent over the connection is aimed to be prevented by the Multiplex
transport layer one level higher.

Sosistab2 Multiplex
In the Sosistab2 Multiplex key exchange, clients and exit servers exchange long-term and ephemeral Diffie
Hellman keys. Clients check that the long-term key sent by the exit server they are connecting to matches the
one received from the binder for that server. The keys are used to calculate a “triple Diffie-Hellman”
handshake, similar to that specified in the X3DH protocol. The X3DH protocol is simplified here due to the
binder server being trusted to have an authentic long-term key for the exit server, and the fact that ephemeral
keys can be generated online.

https://datatracker.ietf.org/doc/draft-ietf-privacypass-architecture/03/
https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://github.com/phayes/rsa-fdh
https://signal.org/docs/specifications/x3dh/

Page 31 of 42

Privileged and Confidential
Report

Replay protection for the Multiplex protocol consists of a “replay filter” on the nonces of the symmetrically
encrypted messages, which drops messages that contain a recently-seen nonce or a nonce that does not
appear in a window of 10,000 sequential values. There is potential here for a race condition of two identical
messages being accepted since the filter is not synchronized, however in practice the encapsulated protocol is
likely to detect this. The handshake itself is not authenticated nor timestamped, but the checking of the
servers long-term public key means message forgery should produce an incorrect shared secret.

Assuming key material was deleted, compromise of a long-term exit servers private key should not
compromise past sessions due to the use of ephemeral keys. However, sessions from the client with a
particular exit server could last for long periods. A mechanism for periodic rekeying to prevent long-lived
sessions from compromise would be a possible improvement.

Future Work
Within the scope of this timeboxed assessment, the team had time to validate the primitives and overall
operation of the protocol by code review and dynamic testing. In future, the team recommends that a formal
specification be written for the Geph cryptographic protocols, at which point a more in-depth review of
protocol considerations could be carried out.

THREAT MODEL

To outline the attack surface and discover the applicable threats, the first step in drawing up Geph's threat
model was identifying its main components, links, and trust boundaries, and consequently its security
requirements.

Please note: What follows is the assessment team's interpretation of attack surface area and threats. Threat
models are often subjective and two different expert security practitioners may have a difference in subjective
thinking in how they are defined.

A useful tool to graphically depict this is a Data Flow Diagram (DFD). This type of diagram should assist
analysts, helping them better understand the system and identify applicable threats using the STRIDE
approach.

https://threatdragon.github.io/threat-model-diagrams/
https://en.wikipedia.org/wiki/STRIDE_(security)

Page 32 of 42

Privileged and Confidential
Report

The team drew up the following diagram for Geph architecture:

Partial Application Decomposition

The following are the process entities involved in the architecture:

• Bridge: “Untrusted” part of Geph network which simply forwards traffic from client to exit to
circumvent blocking of exit server IPs

• Binder: The binder service is the critical central server for the Geph network. It stores the private keys
that authenticate all users, and communicates with all other Geph infrastructure elements

• Exit Server: Last part of Geph network which forwards traffic to requested servers

• Captcha Service: Web service running on Appspot that creates and validates captchas

• Geph website: Geph.io frontend, with download links and payment options for Plus subscription

• Domain fronts: External CDNS (e.g. Netlify) used to proxy request to blocked binder servers

• Backblaze File Storage: External servers hosting Geph binaries

Of these, the Binder servers are considered the main trusted component, but with some caveats – see the
Protocol and Cryptography Review for a full discussion of this. Bridges, Exit Servers, the Captcha Service, and
the Geph website are all operated by the Geph team, so are trusted to some extent, however the network
could be recovered if they were compromised. In particular, Bridges are quickly spun up and down on AWS
LightSail and just hold a single low-value secret and are designed not to have any insight into users' traffic
other than metadata.

Page 33 of 42

Privileged and Confidential
Report

The following data stores were identified:

• Geph Database: Main database storing all Geph data: users, exits, bridges.

• Local Data: Local configuration files for client

The following actor object was identified, as the user in the system. This user is assumed to have a single use-
case, which is to bypass Internet censorship:

• User/Geph Client: The user runs a copy of geph4-client locally, whether on desktop or mobile. This
authenticates with the binder, retrieves a list of bridges and exits, then exposes interfaces
(SOCKS/HTTP proxy/VPN) to allow traffic to be forwarded over the Geph network.

The following list details the data flows between entities:

• Forward traffic: Client can be configured to directly forward traffic to exit server without going via
bridge (Sosistab2)

• Forward traffic: SOCKS proxy, HTTP proxy, or VPN sends client traffic to bridge over encrypted &
obfuscated sosistab2 protocol (Sosistab2)

• Forward traffic: Bridge forwards client traffic to exit server using iptables rules (Sosistab2)

• Validate captcha: Binder validates captcha challenge against server (HTTPS)

• Return captcha: Binder fetches captcha challenge to send to client (HTTPS)

• Send bridges and exits: After authenticating with credentials, the client sends the binder its signed
token to get a list of bridges and exits it can connect to (Bridge protocol)

• Authenticate (via domain fronting): The first stage of a Geph connection; client sends an
authentication message to the Binder using encrypted binder protocol, via a domain front (Binder
protocol)

• Store descriptor: Exit server sends its data to the binder so it can be selected by the client (Binder
protocol)

• Save user info: Website marks user as Plus user after payment details sent (HTTPS)

• Buy Plus plan: User can use Stripe to purchase subscription on website (HTTPS)

• Get user info: User details returned to frontend after authenticating on website (HTTPS)

• Return traffic: Bridge forwards client traffic to exit server using iptables rules (Sosistab2)

• Return traffic: SOCKS proxy, HTTP proxy, or VPN sends client traffic to bridge over encrypted &
obfuscated sosistab2 protocol (Sosistab2)

• Return traffic: Client can be configured to directly forward traffic to exit server without going via
bridge (Sosistab2)

• Get user info: User details returned to frontend after authenticating on website (HTTPS)

• Store credentials: User credentials cached to file on local filesystem.

• Load credentials: User credentials cached to file on local filesystem.

• Get exits: Bridge polls binder for exit servers to form connections with (Binder protocol)

• Return exits: Binder returns some number of exit servers to bridge (Binder protocol)

• Fetch new binary: Bridge runs a loop which periodically fetches new version from Backblaze and
launches it (HTTPS)

• New binary version: New version of geph4-bridge executed on bridge (HTTPS)

Page 34 of 42

Privileged and Confidential
Report

Attacker Behavioral Summary
Since Geph is an anti-censorship tool, the main attackers that come to mind are nation-states implementing
censorship. While it is often thought that nation-state adversaries are hopeless to defend against, in practice
they may only deploy a limited number of resources to attacking a network such as Geph, meaning that raising
the bar and denying easy ways to disrupt the network is an important goal to strive towards.

1. The attacker is assumed to be interested in the list of websites and metadata that users are accessing
through the Geph network (e.g., through compromising an Exit server).

2. The attacker is also assumed to be interested in correlating personal identifiers (e.g., IP addresses) with
particular traffic flows.

3. The attacker would like to gain system access to high-value servers such as the Binder service to access
the database.

4. Similarly, an attacker would like to carry out a supply chain attack in order that either clients or servers
are running backdoored code that sends data to the attacker.

5. The attacker would like to disable the network by a high traffic denial of service attack.
6. The attacker would alternatively like to disable the network by censoring all bridges and making it

impossible for users to connect to a network entry point.

High Priority Threats and Mitigations

Threat Component Description Mitigation

Sosistab2
Information
Leak

Information
disclosure

User/Geph
Client (Actor)

Bug in the transport protocol causes
request data or metadata to leak,
identifying the user seeking
censorship circumvention

Increase testing of protocol on
all platforms to ensure all
traffic is obfuscated and
encrypted

Sosistab2
cryptography
failure

Information
disclosure

User/Geph
Client (Actor)

A cryptographic failure (e.g. nonce
reuse) allows decryption of traffic by
passive adversary

Cryptographic audit and
testing

Medium Priority Threats and Mitigations

Threat Component Description Mitigation

Unencrypted requests

Tampering

User/Geph
Client (Actor)

The Geph client makes
requests over
unauthenticated protocols
(e.g. HTTP)

All traffic goes over
confidential and
authenticated protocols

Unauthenticated updates

Tampering

Bridge
(Process)

The bridge fetches auto
updates from external
servers which aren't
cryptographically signed,
which could lead to an
attacker executing code on
bridge servers

Cryptographically
authenticate updates

Page 35 of 42

Privileged and Confidential
Report

User deanonymized

Information disclosure

Binder
(Process)

Geph network is able to
track network requests for a
particular identity

Robust authentication
protocol

Membership upgrade

Elevation of privilege

Binder
(Process)

User is able to upgrade to
Plus plan without paying

Separate logic to prevent
membership upgrades

Unauthenticated users

Spoofing

Binder
(Process)

Users can connect to the
Geph network without
authentication

All interactions require
time-limited tokens

Silent compromise of binder

Tampering

Binder
(Process)

The binder service
represents an attractive
target to compromise via
e.g. exploit in OS package,
after which traffic would be
monitored

Intrusion and detection,
EDR to catch persistent
compromise

User
deanonymizationInformation
disclosure

Exit Server
(Process)

Exit server can
deanonymize user

Geph authentication
protocol

Modify user traffic

Tampering

Exit Server
(Process)

Exit server modifies user's
traffic

HTTPS

Spoofed exit server

Spoofing

Exit Server
(Process)

An attacker is able to create
a fake exit server on the
network

Private key to authenticate

Bandwidth exhaustion

Denial of service

Bridge
(Process) Exit
Server
(Process)

Exit servers can no longer
pass new traffic due to
many high bandwidth
streams

Ability to scale up exit
servers and
terminate/limit abusive
traffic flows

Replay attacks

Tampering

Exit Server
(Process)

Attackers can replay
captured traffic

Monitor timestamp and
nonces in connections

Credential cracking

Information disclosure

Geph
Database
(Store)

See OWASP Automated
Threat #7:
Brute force, dictionary and
guessing attacks used
against authentication
processes of the application
to identify valid account
credentials

Defences include
restriction of excessive
authentication attempts,
control of interaction
frequency and
enforcement of a single
unique action

Account creation

Elevation of privilege

Geph
Database
(Store)

See OWASP Automated
Threat #19:
Bulk account creation, and
sometimes profile
population, by using the

Defences include control of
interaction frequency,
enforcement of a single
unique a action and
enforcement of behavioral
workflow

Page 36 of 42

Privileged and Confidential
Report

application’s account signup
processes

Low Priority Threats and Mitigations

Threat Component Description Mitigation

Spoof bridge server

Spoofing

Bridge (Process) An attacker is able to create a fake
bridge server on the network

Bridge private key

DoS of binder
servers

Denial of service

Binder
(Process)

Geph network knocked over by
repeated application of intensive
operations on Binder servers.

Anti-abuse
mechanisms

Captcha bypass

Spoofing

Captcha Service
(Process)

Attackers are able to register accounts
without legitimately solving captcha

Remove bypasses and
increase captcha
difficulty

User credentials
exposed to all
processes

Information
disclosure

Local Data
(Store)

Local users can learn credentials of
other users via the command line /
open permissions on config files

Restrict permissions

SOFTWARE DEVELOPMENT LIFECYCLE REVIEW

In this section, individual findings related to the Geph SDLC process are discussed and recommendations
related to software development practices, secret management processes, build/signing/release processes,
software updates, and potential automation solutions are included.

SDLC Background:
The SDLC is a structured process for creating high-quality software. A typical SDLC methodology includes the
following phases of software development:

• Requirement analysis

• Design

• Development

• Testing

• Deployment

• Maintenance

A notable insight from industry SDLC research is that bugs or design flaws are easier and cheaper to fix early in
the process, as compared to after software is deployed. This is particularly true in the case of security
vulnerabilities, which can cause significant business impact if exploited. In particular, SDLC review with a focus
on security aims to identify places where processes can be improved so that security vulnerabilities can be
systematically caught long before reaching production.

Page 37 of 42

Privileged and Confidential
Report

Overview:
As a fully open-source project with a small team of maintainers, Geph's SDLC process was fairly informal and
many typical SDLC recommendations which are aimed at larger organizations did not apply. The assessment
team took these factors into consideration when performing this phase of the engagement and focused on
recommendations that would provide a tangible security benefit at the present time as well as longer term
improvements that would make the project more robust as it continues to mature.

Overall, the Geph developers paid careful attention to security concerns and followed many best practices
regarding supply chain security, account protection and password hygiene. All user accounts were protected
with TOTP Multi-Factor Authentication where possible, all passwords were randomly generated by a publicly
audited password manager, and full disk encryption was leveraged on all workstations containing security
relevant data for the project.

Despite these best practices, the assessment team identified some opportunities for improvement in the
overall SDLC process. Automated source code analysis tools for Rust are continuing to mature, and other
technologies used by the project such as Kotlin and JavaScript are well-supported. Tracking of vulnerable
dependencies is relatively trivial to implement using tools like GitHub's dependabot or cargo-audit and would
prevent vulnerabilities such as the Out-of-Date Libraries in Use finding in this report.

One of the most urgent recommendations involves integrity verification for application binaries and updates.
Given that Geph's most significant adversaries are nation states, the assessment team believes it would be
within their capability to tamper with precompiled binaries to compromise end users or server components
such as bridges. Modifying the bridge's automatic update functionality and providing end users with high
security needs the ability to verify the integrity of application code and would help mitigate these kinds of
attacks. While the assessment team believes this recommendation to be urgent, it was considered a Medium-
term recommendation due to the complexity involved in implementing it.

Overview of Recommendations:
The assessment team formulated eight recommendations for how Geph could further improve its SDLC. These
recommendations have been divided into three suggested timeframes for implementation:

• Short-term goals, which can be implemented within a few months.

• Medium-term goals, which can be implemented in the next year.

• Long-term goals, which should be implemented as the project team matures or when higher level of
security assurance is required.

Many of these goals are practices that should be completed periodically and/or at significant milestones.

SDLC Short-Term Goals

SDLC.S1. Increase Use of Static Analysis Tools
Static analysis tools scan codebases, matching code patterns against a library of rules to detect security
hotspots and potential vulnerabilities. While they often produce false positives and do not catch more
sophisticated vulnerabilities, they are invaluable at preventing several common bugs at an early stage of the
SDLC. The ideal way to set up the tools is to run them on every pull request and commit as part of a CI/CD
pipeline. Tools should also be configured carefully so that alerts are high signal and cannot be easily ignored
(e.g., by preventing push if the CI/CD pipeline fails). Geph leveraged CircleCI to run unit tests and check for
build errors when commits are pushed to GitHub, so extending the CI configuration to integrate tools such as
Semgrep should be straightforward.

Page 38 of 42

Privileged and Confidential
Report

SDLC.S2. Publish Disclosure Policy for Reporting Security Concerns
The Geph project did not publish a security policy to guide developers and researchers on how to report
security vulnerabilities. Publishing clear guidance on how to notify developers of security concerns helps
streamline the process and, in some cases, may reduce the amount of time between vulnerability discovery
and remediation. Public guidelines on contributing and reporting security vulnerabilities also help encourage
contributions from the community, which can help expand the bandwidth for development of the project.

SDLC Medium-Term Goals

SDLC.M1. Track Vulnerable Dependencies
The Geph project tracked security vulnerabilities in libraries and software it uses on an ad-hoc basis.

This may lead to vulnerabilities that stem from outdated components, as discussed in the finding Out-of-Date
Libraries in Use in this report. The Geph team should work to automate the tracking of security vulnerabilities
in the software components its business depends on. Specifically for Rust, the cargo audit tool could be
integrated in the CircleCI setup. Alternatively, GitHub's dependabot solution offers support for Rust
Cargo.lock files.

SDLC.M2. Implement Integrity Verification for Application Updates
The bridge servers contained code to automatically update the software by downloading precompiled binaries
from Backblaze B2, however no software integrity verification was performed on these updates. This could
allow an attacker who has managed to compromise the B2 bucket or Backblaze account to deploy malicious
code on the bridges. The impact in this scenario would mainly be limited to Denial-of-Service (DoS) since the
Geph architecture treats bridges as untrusted.

An attacker could also target precompiled desktop clients (also hosted in B2) that are served to end users to
compromise their devices as it wasn't possible to verify the integrity of the Geph desktop clients. Testing
builds were distributed via Telegram, which provides another potential avenue for attack if an adversary were
able to compromise the Geph developer's account or attempt social engineering attacks against users in the
channel aimed at delivering them malicious versions of the client.

The assessment team recommends implementing signature verification on all software updates and aborting
the update process if this verification process fails. Note that at the time of assessment, the binder and exit
servers were manually updated, and the desktop clients simply instructed users to download the latest builds
from Backblaze. Implementing automatic updates from within the application could handle integrity
verification and also make it easier for users and servers to remain up to date with the latest versions of the
software.

As a short-term mitigation, the assessment team recommends giving users the option of manually verifying
the precompiled desktop binaries via GPG. This is often done by hosting a signed file containing the SHA256
hashes of the binaries that users can then verify with the maintainer's public key.

SDLC.M3. Protect Accounts With Hardware Two-Factor Authentication
The Geph team followed secure practices regarding password hygiene and Two-Factor Authentication (2FA) by
opting for TOTP on a GrapheneOS-based mobile device and randomly generated unique passwords using
Bitwarden. While TOTP is a significant improvement over email and SMS-based 2FA methods, this method is
susceptible to phishing attacks as demonstrated in many high-profile breaches. An attacker who can phish a
TOTP token could potentially compromise the Geph supply chain with malicious code targeting Geph
infrastructure and end users.

Page 39 of 42

Privileged and Confidential
Report

As an improvement to TOTP, the assessment team recommends that Geph adopt FIDO2 hardware-backed
2FA. The FIDO2 protocol provides protection against phishing attacks by cryptographically authenticating the
service the user is logging into. GitHub, AWS, and other providers used by the Geph team support FIDO2 2FA,
and the team's Crates.io account would additionally be protected as the service uses GitHub for
authentication.

SDLC Long-Term Goals

SDLC.L1. Regular Security Assessments
The assessment team recommends that consistent periodic security audits of new production code are
integrated into the Geph SDLC.

Security assessments will inform and govern the other recommendations in this document. For every
vulnerability that is discovered in an assessment:

• The vulnerability should be mitigated, or risk accepted.

• The Geph team should determine that no more vulnerabilities of its class exist, especially in code or
infrastructure that was out of scope for review.

• Automated processes should be put in place to prevent vulnerabilities of this class from appearing
again.

SDLC.L2. Incorporate Code Review Security Checklists Into Existing Manual Code Review Processes
A reliable code review process is one hallmark of a checks and balances system found within mature SDLCs.
Regular code reviews are amongst the most powerful tools available for reducing defects during the software
engineering process.

However, while code reviewers are generally aware of bad development practices, security defects are often
subtle and complex. They can often require a wide array of knowledge that may not always be available to any
particular code reviewer.

The assessment team’s recommended improvement to this situation is to implement the use of checklists
during the code review process. Checklists are proven to allow people and organizations to significantly reduce
the burden of coping with overwhelming complexity. These checklists reduce the cognitive load even in
projects like Geph where there is a small number of developers and only one reviewer, and the benefit will be
multiplied if more maintainers join the project in the future.

Incorporating a security checklist, employed by every maintainer during their code reviews, can have a
profound impact in preventing the most common types of security vulnerabilities from being deployed to
production.

SDLC.L3. Sign All Git Commits and Tags
The Git version control system offers the ability to cryptographically sign commits and tags within a repository.
These signatures allow developers and end users to verify that code was not maliciously added to the
repository by an attacker who has managed to compromise a maintainer's GitHub account.

The assessment team recommends signing all commits and tags with the maintainer's private key. This would
also increase security during the update process on the binder and exit servers, as these components were
updated by manually checking out the repository and building from source locally.

Page 40 of 42

Privileged and Confidential
Report

APPENDICES

OWASP Mobile Top 10

Category Description Assessment Observations

M1. Improper Platform
Usage

This category covers misuse of a platform feature
or failure to use platform security controls. It
might include Android intents, platform
permissions, misuse of TouchID, the Keychain, or
some other security control that is part of the
mobile operating system. There are several ways
that mobile apps can experience this risk.

Multiple findings related to Improper
Platform Usage were identified in the Geph
Android application. For example,
the application stored user
credentials in plaintext using the
SharedPreferences API rather than
the Android KeyStore. The
application allowed backups, which
could be exploited to obtain user
credentials. The application was
signed with the v1 signature scheme,
exposing users with the application
installed on older versions of
Android to various attacks. Finally,
launchMode setting in the
application manifest enabled task
hijacking attacks against users on
vulnerable devices.

M2. Insecure Data Storage This new category is a combination of M2 + M4
from Mobile Top Ten 2014. This covers insecure
data storage and unintended data leakage.

One finding related to Insecure Data
Storage was identified during the mobile
application assessment. Specifically, the

Geph Android application stored user
credentials in plaintext using the
SharedPreferences API, which could
make it easier for an attacker with
access to the device to compromise
the user's account.

M3. Insecure
Communications

This covers poor handshaking, incorrect SSL
versions, weak negotiation, cleartext
communication of sensitive assets, etc.

No findings related to Insecure
Communication were identified during the

mobile assessment. The Geph mobile
applications leveraged various
encrypted protocols to achieve
obfuscation from censorship
authorities.

M4. Insecure Authentication This category captures notions of authenticating
the end user or bad session management. This can
include:

• Failing to identify the user at all when that should
be required

• Failure to maintain the user's identity when it is
required

• Weaknesses in session management

No findings related to Insecure
Authentication were identified during the
mobile assessment. Authentication
occurred over an encrypted protocol and
the overall design did not leverage
traditional session management.

M5. Insufficient
Cryptography

The code applies cryptography to a sensitive
information asset. However, the cryptography is

No findings related to Insufficient
Cryptography were identified during this

Page 41 of 42

Privileged and Confidential
Report

insufficient in some way. Note that anything and
everything related to TLS or SSL goes in M3. Also, if
the app fails to use cryptography at all when it
should, that probably belongs in M2. This category
is for findings where cryptography was attempted,
but it wasn't done correctly.

assessment. The application used custom
obfuscated and encrypted protocols for all
outbound communication. Client side
cryptography was handled by the native
Rust client and covered as part of the
Cryptography Review component of this
assessment.

M6. Insecure Authorization This is a category to capture any failures in
authorization (e.g., authorization decisions in the
client side, forced browsing, etc.). It is distinct
from authentication findings (e.g., device
enrolment, user identification, etc.).

If the app does not authenticate users at all in a
situation where it should (e.g., granting
anonymous access to some resource or service
when authenticated and authorized access is
required), then that is an authentication failure
not an authorization failure.

No findings related to Insecure
Authorization were identified during the
mobile assessment. As stated previously,
the application did not use traditional
session management and did not have
separate user roles, other than premium
accounts in addition to free accounts. The
team attempted to tamper with local data
to bypass these controls and gain access to
premium features but was unsuccessful.

M7. Client Code Quality This was the "Security Decisions Via Untrusted
Inputs", one of our lesser-used categories. This
would be the catch-all for code-level
implementation problems in the mobile client.
That's distinct from server-side coding mistakes.
This would capture things like buffer overflows,
format string vulnerabilities, and various other
code-level mistakes where the solution is to
rewrite some code that's running on the mobile
device.

No findings related to Client Code Quality
were identified during the mobile
assessment. The mobile applications
contained relatively minimal platform-
specific code and instead relied on the
client, written in Rust, to implement most of
the logic.

M8. Code Tampering This category covers binary patching, local
resource modification, method hooking, method
swizzling, and dynamic memory modification.

Once the application is delivered to the mobile
device, the code and data resources are resident
there. An attacker can either directly modify the
code, change the contents of memory
dynamically, change or replace the system APIs
that the application uses, or modify the
application's data and resources. This can provide
the attacker a direct method of subverting the
intended use of the software for personal or
monetary gain.

One finding related to Code Tampering was
identified during the mobile assessment.
Specifically, the v1 signature included in the
Android application APK could allow
attackers to inject malicious code which
poses as an application update, and the
verification of the update would succeed on
older Android devices.

M9. Reverse Engineering This category includes analysis of the final core
binary to determine its source code, libraries,
algorithms, and other assets. Software such as IDA
Pro, Hopper, otool, and other binary inspection
tools give the attacker insight into the inner
workings of the application. This may be used to
exploit other nascent vulnerabilities in the
application, as well as revealing information about
back end servers, cryptographic constants and
ciphers, and intellectual property.

No findings related to Reverse Engineering
were identified during the mobile

assessment. All Geph components,
including the mobile applications,
are open source and freely available
on GitHub, so the assessment team
considered this class of vulnerability
out-of-scope for the mobile
assessment.

Page 42 of 42

Privileged and Confidential
Report

M10. Extraneous
Functionality

Often, developers include hidden backdoor
functionality or other internal development
security controls that are not intended to be
released into a production environment. For
example, a developer may accidentally include a
password as a comment in a hybrid app. Another
example includes disabling of 2-factor
authentication during testing.

One finding related to Extraneous
Functionality was identified during the
mobile assessment. The iOS and Android
applications both exposed an RPC server to
other applications on the device over a TCP
socket. This allows malicious applications to
query information about the current VPN
tunnel and to totally shut off the tunnel.
This could in-turn lead to Denial-of-Service
(DoS) or disclosure of the user's identity to
adversaries in hostile network
environments.

