
 
 

 
Page 1 of 19 

Privileged and Confidential 
Report 

 
Security Assessment of Open Technology Fund’s client 

VPN Hood’s 
Mobile application, Windows client, and Server 

 

 

 

  



 
 

 
Page 2 of 19 

Privileged and Confidential 
Report 

TABLE OF CONTENTS 

Executive Summary ......................................................................................................................... 3 

Include Security (IncludeSec) .................................................................................................................... 3 

Assessment Objectives .............................................................................................................................. 3 

Scope and Methodology ........................................................................................................................... 3 

Findings Overview ..................................................................................................................................... 3 

Next Steps ................................................................................................................................................. 3 

Risk Categorizations ........................................................................................................................ 4 

Critical-Risk ................................................................................................................................................ 4 

High-Risk.................................................................................................................................................... 4 

Medium-Risk ............................................................................................................................................. 4 

Low-Risk .................................................................................................................................................... 4 

Informational ............................................................................................................................................ 4 

Introduction ………………………………………………………………………………………………………………………………5 

Critical-Risk Findings ....................................................................................................................... 6 

High-Risk Findings ........................................................................................................................... 6 

Medium-Risk Findings ..................................................................................................................... 6 

M1: [Android] Application Executable Signed with v1 Signature Scheme (JANUS Vulnerability) ............ 6 

Low-Risk Findings ............................................................................................................................ 7 

Informational Findings .................................................................................................................... 7 

I1: [Android] Application Data Backup Is Enabled .................................................................................... 7 

I2: [Android] Cleartext Traffic is Enabled .................................................................................................. 8 

I3: [Android] Jailbreak or Rooted Device Detection Not Implemented .................................................... 9 

Appendices .................................................................................................................................... 11 

Statement of Coverage ........................................................................................................................... 11 

OWASP Mobile Top 10 ............................................................................................................................ 13 

A1: Security Architecture Design Improvements .................................................................................... 15 

Security Concerns Commonly Present in Most Applications .................................................................. 18 

  



 
 

 
Page 3 of 19 

Privileged and Confidential 
Report 

EXECUTIVE SUMMARY 

Include Security (IncludeSec) 

IncludeSec brings together some of the best information security talent from around the world. The team is 
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware 
and operating systems to the latest cutting-edge web and mobile applications. More information about the 
company can be found at www.IncludeSecurity.com. 

Assessment Objectives 

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were 
provided for remediation steps which Open Technology Fund’s client VPN Hood could implement to secure its 
applications and systems. 

Scope and Methodology 

Include Security performed a security assessment of Open Technology Fund’s client VPN Hood’s Mobile 
application, Windows client, and Server. The assessment team performed a 28 day effort spanning from June 
12, 2023 – July 19, 2023, using a Standard Grey Box assessment methodology which included a detailed review 
of all the components described in a manner consistent with the original Statement of Work (SOW). 

Findings Overview 

IncludeSec identified a total of 4 findings. There were 0 deemed to be “Critical-Risk,” 0 deemed to be “High-
Risk,” 1 deemed to be “Medium-Risk,” and 0 deemed to be “Low-Risk,” which pose some tangible security risk. 
Additionally, 3 “Informational” level findings were identified which do not immediately pose a security risk. 

IncludeSec encourages Open Technology Fund’s client VPN Hood to redefine the stated risk categorizations 
internally in a manner that incorporates internal knowledge regarding business model, customer risk, and 
mitigation environmental factors. 

Next Steps 

IncludeSec advises Open Technology Fund’s client VPN Hood to remediate as many findings as possible in a 
prioritized manner and make systemic changes to the Software Development Life Cycle (SDLC) to prevent 
further vulnerabilities from being introduced into future release cycles. This report can be used by as a basis for 
any SDLC changes. IncludeSec welcomes the opportunity to assist Open Technology Fund’s client VPN Hood in 
improving their SDLC in future engagements by providing security assessments of additional products. For 
inquiries or assistance scheduling remediation tests, please contact us at remediation@includesecurity.com.  

https://www.includesecurity.com/
mailto:remediation@includesecurity.com


 
 

 
Page 4 of 19 

Privileged and Confidential 
Report 

RISK CATEGORIZATIONS 

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security 
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that 
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal 
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed 
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal 
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed 
during the course of remediation testing. 

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and 
customers. This includes loss of system, access, or application control, compromise of administrative accounts 
or restriction of system functions, or the exposure of confidential information. These threats should take priority 
during remediation efforts. 

High-Risk findings are those that could pose serious threats including loss of system, access, or application 
control, compromise of administrative accounts or restriction of system functions, or the exposure of 
confidential information. 

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts, 
data, or performance. 

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to 
configuration, and outdated patches or policies. 

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational 
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full 
disclosure but were considered to be out of scope of the engagement. 

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and 
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary 
to reproduce findings), Recommended Remediation, and References.  



 
 

 
Page 5 of 19 

Privileged and Confidential 
Report 

INTRODUCTION 

VPNHood is a virtual private network service designed to circumvent deep packet inspection. It works by 
redirecting TCP packets made by a user to a locally-running SOCKS proxy client, which forwards them to the 
VPNHood server, which makes the connection on the user’s behalf. It is aimed to be undetectable, because it 
looks the user is browsing an ordinary HTTPS website. 

The assessment team performed a twenty-eight-day assessment beginning on June 19th, 2023, and ending on 
July 19th, 2023. 

The following components were reviewed during the assessment: 
• Android Client 
• Windows Desktop Client 
• VPN Server 

 
These primarily used the following technologies: 

• C# 
• C# Designer 
• MSBuild Script 
• PowerShell 
• Bash Shell 

The assessment team performed static code analysis and dynamic testing of all three components. 
Additionally, throughout the assessment, the assessment team found and reported on ways in which the 
VPNHood team may increase their security posture through improvements in architectural design. This 
reporting is found in the “Security Architecture Design Improvements” appendix. 

  



 
 

 
Page 6 of 19 

Privileged and Confidential 
Report 

CRITICAL-RISK FINDINGS 

No Critical-Risk findings were identified during the course of the assessment. 
 

HIGH-RISK FINDINGS 

No High-Risk findings were identified during the course of the assessment. 
 

MEDIUM-RISK FINDINGS 

M1: [Android] Application Executable Signed with v1 Signature Scheme (JANUS Vulnerability) 

Description: 

The assessment team found that the VpnHood application's executable was signed with a v1 APK signature at 
the time of assessment. 

Using a v1 signature makes the application prone to the Janus vulnerability on devices running Android 7 or 
below. The Janus vulnerability allows attackers to smuggle malicious code into the APK without breaking the 
signature. 

At the time of writing, the application supported a minimum SDK version of 22 (Android 5), which also uses 
the v1 signature, thus being vulnerable to this attack. Android 5 devices no longer receive updates and are 
vulnerable to many security concerns. It can be assumed that any installed malicious application may trivially 
gain root privileges on those devices using public exploits. 

Impact: 

The existence of this vulnerability means that attackers could trick users into installing a malicious attacker-
controlled APK which matches the v1 APK signature of the legitimate Android application. As a result, a 
transparent update would be possible without warnings appearing on Android devices, effectively taking over 
the existing application and all of its data. 

Reproduction: 

The following snippet from the apksigner tool shows that the application supported the v1 signature scheme 
at the time of assessment: 

Verified using v1 scheme (JAR signing): true 
Verified using v2 scheme (APK Signature Scheme v2): true 
Verified using v3 scheme (APK Signature Scheme v3): true 
Verified using v4 scheme (APK Signature Scheme v4): false 
 

Recommended Remediation: 

The assessment team recommends increasing the minimum supported SDK level to at least 24 (Android 7) to 
ensure that this vulnerability cannot be exploited on devices running older Android versions. In addition, 
future production builds should be signed only with v2 or greater APK signatures. 

References: 

Janus Vulnerability 

  

https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures


 
 

 
Page 7 of 19 

Privileged and Confidential 
Report 

LOW-RISK FINDINGS 

No Low-Risk findings were identified during the course of the assessment. 
 

INFORMATIONAL FINDINGS 

I1: [Android] Application Data Backup Is Enabled 

Description: 

The VpnHood Android application allowed users to make backups of its application data during the 
assessment. Android supports automatic or manual backups of application data by default. An Android 
application can opt out of this feature by explicitly setting the android:allowBackup option to false in the 
AndroidManifest.xml file. 

Impact: 

An attacker with physical access to the device could perform a manual back up of the VpnHood application's 
data. This could be done using adb, which is a command line tool that provides functionality including, backing 
up application specific data. This is only possible when the android:allowBackup option is enabled. 

This could potentially lead to disclosure of security-relevant user data if the application data contained items 
such as cleartext passwords or personally identifiable information (PII). 

The assessment team found that no security-relevant user data was stored by the VpnHood application. 
However, future iterations could introduce such data. 

Reproduction: 

The VpnHood application was decompiled and the following code snippet from the AndroidManifest.xml file 
shows that the android:allowBackup option was enabled. 

<?xml version="1.0" encoding="utf-8"?> 
<manifest android:versionCode="369" android:versionName="2.9.369" android:installLocation="auto" 
android:compileSdkVersion="33" android:compileSdkVersionCodename="13" package="com.vpnhood.client.android" 
platformBuildVersionCode="33" platformBuildVersionName="13" 
... 
android:name="crc647486a17e72a62434.AndroidApp" android:debuggable="false" android:allowBackup="true" 

The VpnHood application could be backed up with the following command: 

adb backup -f backup.bak com.vpnhood.client.android 
 

Recommended Remediation: 

The assessment team recommends setting the android:allowBackup option to false in the 
AndroidManifest.xml file. This would prevent security-relevant user data disclosures in future iterations of the 
application. 

References: 

Android - Enable And Disable Backup 

 

  

https://developer.android.com/guide/topics/data/autobackup#EnablingAutoBackup


 
 

 
Page 8 of 19 

Privileged and Confidential 
Report 

I2: [Android] Cleartext Traffic is Enabled 

Description: 

The VpnHood application allowed cleartext traffic during the assessment, as the android:usesCleartextTraffic 
option was enabled in the AndroidManifest.xml file. The android:usesCleartextTraffic option is used by the 
Android Operating System (OS) and third-party libraries to determine if cleartext communications are allowed 
by the application. 

Impact: 

If the Android Operating System (OS) and third-party libraries do not enforce encrypted communications, such 
as Transport Layer Security (TLS) then the user of the application is at risk of: 

• Data disclosure due to data being sent in cleartext from the application to the backend server or 
another endpoint 

• Man-in-the-Middle (MITM) attacks, as there is no confidentiality, authenticity, and protection against 
data tampering 

The assessment team detected no cleartext communications by the VpnHood application while performing a 
dynamic analysis. 

Reproduction: 

The VpnHood application was decompiled and the following code snippet from the AndroidManifest.xml file 
shows that the android:usesCleartextTraffic option was enabled. 

<?xml version="1.0" encoding="utf-8"?> 
<manifest android:versionCode="369" android:versionName="2.9.369" android:installLocation="auto" 
android:compileSdkVersion="33" android:compileSdkVersionCodename="13" package="com.vpnhood.client.android" 
platformBuildVersionCode="33"  
... 
android:banner="@mipmap/banner" android:extractNativeLibs="true" android:usesCleartextTraffic="true"  
 

Recommended Remediation: 

The assessment team recommends setting the android:usesCleartextTraffic option to false. If the application 
requires cleartext communications then the Network Security Configuration feature 
(android:networkSecurityConfig) can be used to configure exceptions for certain domains, limiting the impact 
of allowing cleartext traffic in the application. 

Setting the android:usesCleartextTraffic option to false does not guarantee that third-party libraries will 
honor it, but follows security best practices for Android development. 

References: 

OWASP Mobile Top 10: M3 - Insecure Communication 
CWE: CWE-319 - Cleartext Transmission of Sensitive Information 
Android - Network security configuration 

 

  

https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://cwe.mitre.org/data/definitions/319.html
https://developer.android.com/training/articles/security-config


 
 

 
Page 9 of 19 

Privileged and Confidential 
Report 

I3: [Android] Jailbreak or Rooted Device Detection Not Implemented 

Description: 

At the time of assessment, the VpnHood application did not implement any detection mechanism to 
determine if a device was jailbroken or rooted. Devices that are jailbroken or rooted might have certain 
security features disabled which are used to protect the integrity of the device and applications running on it. 

Impact: 

An attacker using the application on a jailbroken or rooted device could tamper with the application or 
reverse-engineer it. A malicious application running on the jailbroken or rooted device could also tamper or 
interfere with other applications on the device. 

Reproduction: 

The assessment team discovered this vulnerability by running the application on a jailbroken or rooted device 
and confirming that the user was not notified about the risks involved with running the application on that 
device. 

The following image displays confirmation that the device used during the assessment was jailbroken or 
rooted: 

 

  



 
 

 
Page 10 of 19 

Privileged and Confidential 
Report 

The following image displays the application running on the jailbroken or rooted device without notifying the 
user: 

 

Recommended Remediation: 

The assessment team recommends implementing multiple jailbreak detection techniques to prevent 
information disclosure. Additional information about these techniques is available in the References section. 

References: 

OWASP Mobile Top 10 - M9 Reverse Engineering 
Jailbreak Detection Techniques 
OWASP Jailbreak Detection and Bypass 

  

https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-detection-methods/
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md


 
 

 
Page 11 of 19 

Privileged and Confidential 
Report 

APPENDICES 

Statement of Coverage 

The IncludeSec team performed a grey box security review of the VPNHood application and server. The 
version audited was v2.9.370, and the following repositories were in scope: 

• VpnHood.App.Launcher 

• VpnHood.Client.Device.Android 

• VpnHood.Client.Device 

• VpnHood.Server 

• VpnHood.Server.Access 

• VpnHood.Client.App.UI 

• VpnHood.Client.App 

• VpnHood.App.Updater 

• VpnHood.Client 

• VpnHood.Client.App.Win.Setup 

• VpnHood.Client.Device.WinDivert 

• VpnHood.Tunneling 

• VpnHood.Server.App.Net 

• VpnHood.Client.App.Win 

• VpnHood.Client.App.Android 

• VpnHood.Common 

The main focus of the assessment was on the Linux and Windows servers and the Windows and Android 
clients. During the last day of the assessment, the team briefly reviewed upcoming security-relevant changes 
by performing a git diff of the latest dev branch and version v2.9.370. 

Assessment Setup 
Virtual Machines (VMs) were configured with each server and client to perform dynamic analysis of the 
components. Tokens for each server were generated and used with the clients according to the VPNHood 
Wiki. 

The VMs were also configured with tooling such as Wireshark,  Sysinterals Suite and Bettercap to aid with 
dynamic analysis. 

Methodology  
The team used established security frameworks to structure the evaluation and ensure thorough coverage of 
potential vulnerabilities that outline the most critical security risks. The frameworks used were as follows: 

• OWASP Top 10 

• OWASP Mobile Top 10 

• CWE Top 25 

  

https://github.com/vpnhood/VpnHood/wiki
https://github.com/vpnhood/VpnHood/wiki
https://www.wireshark.org/
https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://www.bettercap.org/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-mobile-top-10/
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html


 
 

 
Page 12 of 19 

Privileged and Confidential 
Report 

The threat model for the VPNHood server and client included nation-state actors, and some main concerns 
considered during the audit were: 

• Post and pre-authentication attacks against the server that could lead to information disclosure, 
memory corruption or unintended behaviour 

• Man-In-The-Middle (MITM) attacks against the client and server 

• Cryptography implementation and usage between the client and server 

• Potential vectors for fingerprinting the VPNHood server 

• Privacy concerns, such as IP or DNS disclosure of the client via logs or at the network level 

• Tampering with the software update mechanism and the authenticity of the updates 

• Potential vectors for Denial-of-Service (DoS) attacks 

• File permissions and process permissions for the server and client 

The team completed the following items during the assessment: 

Review of Provided Documentation 
The provided documentation, such as the architecture diagram of the VPNHood application, was reviewed. 

Automated Source Code Review 
The team used the Static Application Security Testing (SAST) tool Semgrep to perform an automated analysis 
of the VPNHood repositories. All results were reviewed manually, and false positives were removed. The 
following are some examples of the Semgrep rules that were used for the static analysis: 

• https://semgrep.dev/p/csharp 

• https://github.com/returntocorp/semgrep-rules/tree/develop/csharp 

• https://semgrep.dev/p/cwe-top-25 

• https://semgrep.dev/p/owasp-top-ten 

Dynamic Analysis 
The team dynamically analysed the VPNHood clients and servers. This included but was not limited to the 
following items: 

• The Windows client and servers' attack surface was enumerated with Sysinternals Suite to determine 
security-relevant files, processes, ports and potential misconfigurations 

• The Linux servers' attack surface was enumerated for similar vulnerabilities but with standard Linux 
commands such as lsof, and netstat 

• The Android client was analyzed with Mobile Security Framework (MobSF), and an emulator, where 
normal and malicious user activity was simulated 

• The Windows client was installed on a VM where normal and malicious user activity was simulated 

• The software update mechanism was reviewed to determine if it could be tampered with to download 
a malicious update 

• Attempts to DoS the server were made by sending invalid messages after authentication and flooding 
the server with malicious sessions 

• Logs were reviewed to determine if, e.g. IP disclosure had occurred 

• Network-level tools such as Wireshark and Bettercap were used to capture and audit VPNHood 
network traffic to determine vulnerabilities such as IP disclosure 

  

https://semgrep.dev/
https://semgrep.dev/p/csharp
https://github.com/returntocorp/semgrep-rules/tree/develop/csharp
https://semgrep.dev/p/cwe-top-25
https://semgrep.dev/p/owasp-top-ten
https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://github.com/MobSF/Mobile-Security-Framework-MobSF


 
 

 
Page 13 of 19 

Privileged and Confidential 
Report 

The team found that VPNHood had effectively limited the server's attack surface as it required a valid token 
for authentication and post-authentication; the server only handles a few message types related to session 
and tunnel management. 

Manual Source Code Review 
The team performed a manual code review of the provided VPNHood repositories, following the mentioned 
security frameworks. The primary focus of the manual review was the security-relevant parts of the source 
code, with the main concerns mentioned earlier in mind. The team also reviewed previously patched 
vulnerabilities based on the git history. During the manual code review, the team noted several positive 
security practices by VPNHood, such as: 

• The use of ReSharper for continuous code-analysis during development 

• The implementation and use of test cases to validate the expected behavior of the application and to 
find potential vulnerabilities 

• Code reuse between the different components 

Application Dependency Review 
The team used the dotnet CLI to check for potentially outdated or vulnerable NuGet packages. The team did 
not identify any outdated dependencies. 

 

OWASP Mobile Top 10 

Category Description Assessment Observations 

M1. Improper Platform 
Usage 

This category covers misuse of a platform feature 
or failure to use platform security controls. It 
might include Android intents, platform 
permissions, misuse of TouchID, the Keychain, or 
some other security control that is part of the 
mobile operating system. There are several ways 
that mobile apps can experience this risk. 

The assessment team did not find any 
improper platform usage vulnerabilities 
during the assessment. The application 
handled platform usage correctly, for 
example, it handled intents correctly and 
only requested the permissions that were 
necessary. 

M2. Insecure Data Storage This new category is a combination of M2 + M4 
from Mobile Top Ten 2014. This covers insecure 
data storage and unintended data leakage. 

The assessment team discovered insecure 
data storage vulnerabilities during the 
assessment. The following vulnerabilities 
were found: 

• The Android application allowed 
backup of the application data 
which could disclose application 
logs or user data 

• The Android application allowed 
screenshots to be taken which 
could disclose user data or user 
activity when using the application 

M3. Insecure 
Communications 

This covers poor handshaking, incorrect SSL 
versions, weak negotiation, cleartext 
communication of sensitive assets, etc. 

The assessment team discovered an 
insecure communication vulnerability at the 
time of assessment. The application enabled 
the option android:usesCleartextTraffic 
which allows the application and third-party 
libraries to use cleartext channels for 
communication. 

https://www.jetbrains.com/resharper


 
 

 
Page 14 of 19 

Privileged and Confidential 
Report 

M4. Insecure Authentication This category captures notions of authenticating 
the end user or bad session management. This can 
include: 

• Failing to identify the user at all when that should 
be required 

• Failure to maintain the user's identity when it is 
required 

• Weaknesses in session management 

The assessment team did not find any 
insecure authentication vulnerabilities at 
the time of assessment. The application 
implemented and managed authentication 
correctly, for example, the client would 
verify that the server's certificate hash 
matched the expected value in the server 
access token. 

M5. Insufficient 
Cryptography 

The code applies cryptography to a sensitive 
information asset. However, the cryptography is 
insufficient in some way. Note that anything and 
everything related to TLS or SSL goes in M3. Also, if 
the app fails to use cryptography at all when it 
should, that probably belongs in M2. This category 
is for findings where cryptography was attempted, 
but it wasn't done correctly. 

The assessment team did not find any 
insufficient cryptography vulnerabilities at 
the time of the assessment. The application 
implemented and managed cryptographic 
functionality correctly overall, however, the 
UdpChannel2 class, while encrypting the 
data in transit to ensure confidentiality, 
lacks measures for integrity and 
authenticity, making the data susceptible to 
tampering. 

M6. Insecure Authorization This is a category to capture any failures in 
authorization (e.g., authorization decisions in the 
client side, forced browsing, etc.). It is distinct 
from authentication findings (e.g., device 
enrolment, user identification, etc.). 
 
If the app does not authenticate users at all in a 
situation where it should (e.g., granting 
anonymous access to some resource or service 
when authenticated and authorized access is 
required), then that is an authentication failure 
not an authorization failure. 

The assessment team did not find any 
insecure authorization vulnerabilities at the 
time of the assessment. The application did 
not implement different user roles or 
privileged resources. 

M7. Client Code Quality This was the "Security Decisions Via Untrusted 
Inputs", one of our lesser-used categories. This 
would be the catch-all for code-level 
implementation problems in the mobile client. 
That's distinct from server-side coding mistakes. 
This would capture things like buffer overflows, 
format string vulnerabilities, and various other 
code-level mistakes where the solution is to 
rewrite some code that's running on the mobile 
device. 

The assessment team did not find any client 
code quality vulnerabilities during the 
assessment. The developers used 
ReSharper, which provides continuous code 
quality control during .NET development. 
Additionally, test cases were implemented 
to ensure components worked as expected. 

M8. Code Tampering This category covers binary patching, local 
resource modification, method hooking, method 
swizzling, and dynamic memory modification. 
 
Once the application is delivered to the mobile 
device, the code and data resources are resident 
there. An attacker can either directly modify the 
code, change the contents of memory 
dynamically, change or replace the system APIs 
that the application uses, or modify the 
application's data and resources. This can provide 
the attacker a direct method of subverting the 
intended use of the software for personal or 
monetary gain. 

The assessment team discovered a code 
tampering vulnerability at the time of 
assessment. The Android application was 
signed with a v1 Signature Scheme which 
allows an attacker to modify an app without 
affecting its original signature, making the 
system believe it is interacting with the 
original application (JANUS Vulnerability). 



 
 

 
Page 15 of 19 

Privileged and Confidential 
Report 

M9. Reverse Engineering This category includes analysis of the final core 
binary to determine its source code, libraries, 
algorithms, and other assets. Software such as IDA 
Pro, Hopper, otool, and other binary inspection 
tools give the attacker insight into the inner 
workings of the application. This may be used to 
exploit other nascent vulnerabilities in the 
application, as well as revealing information about 
back-end servers, cryptographic constants and 
ciphers, and intellectual property. 

The assessment team did not find any 
reverse engineering vulnerabilities at the 
time of assessment. The application did not 
implement any mitigation for reverse 
engineering but there was no direct security 
impact. 

M10. Extraneous 
Functionality 

Often, developers include hidden backdoor 
functionality or other internal development 
security controls that are not intended to be 
released into a production environment. For 
example, a developer may accidentally include a 
password as a comment in a hybrid app. Another 
example includes disabling of 2-factor 
authentication during testing. 

The assessment team did not find any 
extraneous functionality vulnerabilities at 
the time of assessment. The application was 
not found to use any extraneous 
functionality in release builds. 

 

 

A1: Security Architecture Design Improvements 
Include Security performed a security assessment of VpnHood v2.9.370, which was the latest stable release at 
the time of the assessment. On the final day of the assessment, the team used the command “git diff v2.9.370 
development” to audit security-related changes from version v2.9.370 up to the most recent commit on 
VpnHood's development branch, which can be found at 
https://github.com/vpnhood/VpnHood/tree/development 

The following components were audited during the assessment: 

• VpnHood.App.Launcher 

• VpnHood.Client.Device.Android 

• VpnHood.Client.Device 

• VpnHood.Server 

• VpnHood.Server.Access 

• VpnHood.Client.App.UI 

• VpnHood.Client.App 

• VpnHood.App.Updater 

• VpnHood.Client 

• VpnHood.Client.App.Win.Setup 

• VpnHood.Client.Device.WinDivert 

• VpnHood.Tunneling 

• VpnHood.Server.App.Net 

• VpnHood.Client.App.Win 

• VpnHood.Client.App.Android 

• VpnHood.Common 

  

https://github.com/vpnhood/VpnHood/tree/development


 
 

 
Page 16 of 19 

Privileged and Confidential 
Report 

The primary focus was on the Windows client, Android client, and server-related components. 

The assessment team identified several vulnerabilities and have provided suggestions to strengthen the 
application's security architecture. These proposals address both existing vulnerabilities and potential ones 
which could arise in the future. 

R1: Implement the Use of Static Analysis Tools 
The assessment team recommends that VpnHood incorporate static analysis tools into their regular code 
review process. This could be done through manual reviews or implemented in the CI/CD pipeline for 
automatic and continuous reviews. Doing so would help identify and mitigate vulnerabilities in the codebase. 

The following static analysis tools are free, open-source, and support C#, the primary language in the 
VpnHood project: 

Semgrep 
Semgrep is available from https://semgrep.dev/ and the following rulesets could be used for static analysis of 
C#: 

• https://semgrep.dev/p/csharp 

• https://github.com/returntocorp/semgrep-rules/tree/develop/csharp 

• https://semgrep.dev/p/cwe-top-25 

• https://semgrep.dev/p/owasp-top-ten 

SonarQube 
The assessment team recommends the use of SonarQube, as a complementary tool to Semgrep. It has 452 
rules for C#, example categories include: 

• Vulnerability (34 rules) https://rules.sonarsource.com/csharp/type/Vulnerability 

• Bug (80 rules) https://rules.sonarsource.com/csharp/type/Bug/ 

• Security Hotspot (30 rules) https://rules.sonarsource.com/csharp/type/Security%20Hotspot/ 

CodeQL 
The assessment team recommends the use of CodeQL as VpnHood uses GitHub. The CodeQL CLI is free to use 
on public GitHub repositories and has approximately 300 rules related to C#, example categories include: 

• API Abuse (15 rules) 

• Architecture (3 rules) 

• Bad Practices (31 rules) 

• Complexity (2 rules) 

• Concurrency (7 rules) 

• Configuration (2 rules) 

• Input Validation (3 rules) 

• Likely Bugs (34 rules) 

• Metrics (40 rules) 

• Security Features (63 rules) 

• Useless code (6 rules) 

  

https://semgrep.dev/
https://semgrep.dev/p/csharp
https://github.com/returntocorp/semgrep-rules/tree/develop/csharp
https://semgrep.dev/p/cwe-top-25
https://semgrep.dev/p/owasp-top-ten
https://www.sonarsource.com/
https://rules.sonarsource.com/csharp/type/Vulnerability
https://rules.sonarsource.com/csharp/type/Bug/
https://rules.sonarsource.com/csharp/type/Security%20Hotspot/
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql


 
 

 
Page 17 of 19 

Privileged and Confidential 
Report 

MobSF 
Additionally, the team recommends Mobile-Security-Framework-MobSF, for the VpnHood Android client and 
future iOS client. MobSF supports static analysis of both and could be used to help identify and mitigate 
potential vulnerabilities. 

R2: Implement the Use of Dynamic Analysis Tools 
The assessment team recommends that VpnHood incorporate dynamic analysis tools into their regular code 
review process. This would help with catching potential bugs or vulnerabilities at runtime which static analysis 
would not detect. 

The Mobile-Security-Framework-MobSF supports dynamic analysis of Android applications and could be used 
to help identify and mitigate potential vulnerabilities in the VpnHood Android application. 

R3: Explicitly Set Secure and Privacy Related Default Values in the Android manifest 
The assessment team recommends explicitly setting secure configuration options in the Android manifest for 
the VpnHood Android application. By not doing so, older versions of the Android operating system might use 
default values that could introduce vulnerabilities or privacy infringements. 

R4: Implement Dependency Management with Vulnerability Scanning 
The assessment team recommends that VpnHood implement a process for regularly scanning the code base 
using relevant tools to detect dependencies that are either outdated or have known vulnerabilities. To 
mitigate the risks associated with vulnerable dependencies, the team suggests updating outdated components 
to the latest versions where all publically known vulnerabilities have been addressed. 

To facilitate this, the VpnHood dependencies can be scanned using the following tools: 

Project Name Dependency Vulnerability Scanner Command 

VpnHood dotnet dotnet list packages —vulnerable 
VpnHood dependabot N/A 

R5: Implement Security Measures for the VpnHood GitHub Account 
The assessment team recommends securing the VpnHood GitHub account and its repository, as it is used as a 
part of the VpnHood infrastructure to distribute automatic software updates. The team recommends the 
following items: 

• Enable and enforce the use of multi-factor authentication (2FA) for the VpnHood GitHub account and 
for all the contributors to the VpnHood repository. This would help mitigate against potential attempts 
to compromise the VpnHood repository, which could be leveraged by an attacker to inject malicious 
code into software updates 

• Use trusted GPG keys to sign commits and releases to ensure the integrity and authenticity of the 
code. This would help mitigate potential code tampering and malicious code injection into the 
software updates 

In addition, any applicable items from the official GitHub account security recommendations should be 
implemented. 

R6: Use Crypto Library APIs over Custom Implementations 
The assessment team recommends using known and well-audited crypto libraries such as BouncyCastle .NET 
over custom implementations. For example, the BufferCryptor class had a custom implementation of AES-CTR 
in the Cipher() method. The team found no security concerns in the implementation, but custom cryptography 
has many pitfalls and can be error-prone.  

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-list-package
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure
https://www.nuget.org/packages/BouncyCastle.NetCore


 
 

 
Page 18 of 19 

Privileged and Confidential 
Report 

R7: Implement Use of HMAC for Data Integrity and Authentication 
The assessment team recommends implementing the use of an HMAC with a cryptographically secure hash 
algorithm, such as SHA-256. The UdpChannel2 class encrypts the data transmitted between the server and the 
client and ensures its confidentiality. However, it provides no method for ensuring the integrity and 
authenticity of the data. This means that the data is susceptible to tampering, which could be mitigated by the 
implementation of an HMAC. 

R8: Implement Code Integrity Check for Automatic Updates 
The assessment team recommends implementing a code integrity check for automatic updates, particularly 
for the server component. During the assessment, it was noted that the server component performed 
automatic updates as a privileged user by downloading new releases from GitHub over HTTPS. Despite the 
secure connection, the update process did not perform any code integrity checks on the downloaded release 
before applying the update. This lack of integrity checking exposed the update process to tampering risks, 
such as an attacker replacing the legitimate binary on GitHub with a malicious one. Such a scenario could 
result in the execution of malicious code on the server host. 

The risk could be mitigated by the use of digital signatures. With digital signatures, updates are signed using a 
private key, and the update process verifies these updates using the corresponding public key. This would 
reject any update with a mismatched signature, thereby enhancing the security of the update process. 

 

Security Concerns Commonly Present in Most Applications 

This section contains information about general classes of vulnerabilities that affect the majority of publicly 
exposed web applications. As such, IncludeSec does not present these as specific findings in assessment 
reports, but instead presents these topics as this report Appendix to ensure Client awareness of these topics. 
IncludeSec always encourages clients to review these topics and decide independently whether the security 
benefits apply and are worth the trade-offs in usability for users. 

Credential Stuffing 

Credential Stuffing attacks occur when attackers obtain a list of compromised username and password 
combinations (usually from breaches of other online services) and attempt to leverage them to gain access to 
user accounts. Attackers often conduct these attacks in parallel using several source IP addresses, making 
them difficult to prevent with IP rate limiting, session limiting measures, attack detection JavaScript, or server-
side awareness of vulnerable accounts (e.g., HaveIBeenPwned Database). Additionally, Credential Stuffing 
attacks are unlikely to trigger account lockout mechanisms because, unlike a traditional brute-force attack, 
only a small number of password combinations are attempted for each account. CAPTCHAs are becoming 
increasingly trivial to bypass with recent developments in the field of machine learning, and as a result the 
industry does not consider CAPTCHA to be a robust security control to prevent automated attacks. 

Include Security believes that the only complete mitigation for the credential stuffing threat is Mandatory 
Multi-Factor Authentication (MFA). However, this mitigation adds significant friction to the user experience as 
well as support overhead, so the most common approach in the industry is to deploy some partial mitigations 
but ultimately accept some risk that Credential Stuffing attacks remain a possibility in the absolute sense. Note 
that this risk may be very low if defense in depth is applied using controls mentioned above. 

  

https://ieeexplore.ieee.org/document/9580020
https://ieeexplore.ieee.org/document/9580020


 
 

 
Page 19 of 19 

Privileged and Confidential 
Report 

Multifactor Authentication is Not Mandatory 

Multifactor Authentication (MFA/2FA) mitigates many common authentication vulnerabilities by requiring 
users to have physical access to another device to prove their identity when logging into services. This 
prevents prevalent attacks such as Credential Stuffing (discussed above), Brute-Force Guessing attacks, and 
some types of Authentication-Based Account Enumeration. Hardware 2FA/MFA methods, such as 
WebAuthn/FIDO2, also mitigate phishing attacks that have compromised accounts using legacy 2FA/MFA 
methods (SMS, etc.) during several high-profile breaches. 

As mentioned earlier, mandatory multifactor authentication greatly increases friction for users and support 
staff and is not widely deployed in the industry for these reasons, except in specific applications with very high 
security needs. Many applications support optional 2FA/MFA, and while this practice does increase security 
for users who opt into it, most of the platforms who have analyzed their user base have shown that typical 
users will not choose to enable it if it is not enabled by default (or mandatory), putting the users at risk of 
attacks such as phishing and credential stuffing. 

Application Allows Concurrent Sessions for Same User 

Some applications restrict users from having multiple active sessions at a time, such as connecting from 
multiple devices or browsers. This control is meant to mitigate the risk of an attacker compromising the 
account in some way and going unnoticed by the user. 

IncludeSec believes the security impact to an application if this security feature is not implemented is marginal 
and instead recommends notifying users of other successful authentication events, logging of successful 
authentication events, as well as providing functionality to terminate all active sessions in the event of account 
compromise. This approach allows users to respond quickly to security concerns without introducing 
unnecessary usability concerns. 

JWTs Remain Valid After Deauthentication 

It is considered best practice for applications that leverage traditional server-side sessions to destroy the 
session object on the server as well as clear the data from the browser when a client deauthenticates from the 
application, whether voluntarily or via session timeout. If the application does not do this, an attacker with 
access to the user’s browser or other means to compromise the session token could continue performing 
actions on the user’s account even after they have logged out. 

With JSON Web Tokens (JWTs), the application instead stores session state in a cryptographically signed token 
that is managed by the client. With this design, the token will remain valid until its expiration date, even if the 
user deauthenticates. While it is possible to maintain a JWT “blacklist” on the server to effectively revoke 
tokens, Include Security instead recommends following general security best practices regarding JWTs: 

1. Access tokens should have a very short expiration time (in general, less than 1 hour). 
2. The application can transparently refresh the session in the background using refresh tokens, which 

are generally longer lived than access tokens. 
3. Refresh Tokens should implement Refresh Token Rotation, which helps identify and mitigate 

compromised refresh tokens by invalidating previous refresh tokens each time a token is refreshed. 
4. JWTs should be signed with modern cryptographic algorithms (i.e., RS256) and validated using the 

most proven library provided by the web application framework in use. 
5. JWTs should not contain security relevant or confidential data in the payload, such as PII or application 

secrets. 

https://www.nass.org/sites/default/files/2020-05/Yubico%20White%20Paper%20How%20WebAuthn%20Works.pdf
https://stateful.com/blog/oauth-refresh-token-best-practices

