
Analysis of Information Flows and

Privacy in the WeChat Ecosystem

(Citizen Lab Report)
Mona Wang, Pellaeon Lin, and Jeffrey Knockel

Key findings
● This work performs the first analysis of WeChat’s tracking ecosystem. Using reverse

engineering methods to intercept WeChat’s network requests, we identified exactly what types of

data the WeChat app is sending to its servers, and when.

● We found that granting permissions such as precise geolocation affects the type and amount

of data transmitted, including geolocation data and hardware serial numbers.

● We found that the most fine-grained activity tracking data is sent during Mini Program

execution. All Mini Programs, and thereby their users, are enrolled in the tracking program,

meaning that a large amount of users’ app activity is sent to WeChat and not just the developers

of the app themselves.

● We identify disclosure gaps with WeChat’s privacy policy, which implies that only third-parties

collect usage data related to Mini Programs, when, in fact, WeChat also collects this data.

● Some important features within WeChat, such as Advanced Search and Channels, are not

governed by WeChat’s own Privacy Policy. Instead, they are governed by Weixin’s Privacy

Protection Guidelines. The WeChat Privacy Policy states that these “third-party” services are

“operated by Weixin”. Usually, the Weixin Privacy Protection Guidelines apply in whole to users

signing up with Chinese phone numbers. Because of this, a user’s data might be subjected to a

worse protection than the user thinks.

1



Introduction

With over 1.2 billion monthly active users, WeChat is the most popular messaging and social

media platform in China and third in the world. According to some market research, network

traffic from WeChat made up 34% of Chinese mobile traffic in 2018. WeChat has in many ways

monopolized messaging in China, making it necessary for individuals in China to use. WeChat

has also evolved beyond simply messaging. People commonly use WeChat as a social media

platform to share updates with contacts, as a platform for conducting financial transactions, and

also as a platform for downloading and using other programs, referred to as “Mini Programs.”

WeChat has not only become the default way to contact people in China, but its ecosystem also

encompasses many other necessities of daily life, like performing financial transactions or

calling taxis. Many inside and outside China, therefore, use WeChat out of necessity. Besides

individuals in China, diaspora populations, family members, journalists, International activists,

diplomats, people who do business in China, and just about anyone with a relationship in China

also use WeChat out of necessity. WeChat also complies with Chinese government and local

police requests for data and information, essentially becoming a mass surveillance tool for local

authorities. It also operates a massive content censorship ecosystem for the features on its

platform.

Understanding what data the WeChat application and ecosystem transmits, and to whom, may

be especially important due to the heavily automated surveillance and content censorship

ecosystem operated by the platform. For vulnerable populations that must use WeChat (for

instance, domestic journalists and foreign correspondents, grassroots and diaspora activists),

knowing the limitations of the app can protect them. This kind of risk assessment requires a

more granular understanding of information flows within the WeChat ecosystem.

In the case of WeChat, a large portion of network communications, including when messaging,

viewing WeChat’s “Moments” posts, or sometimes even when using WeChat Mini Programs,

utilize a proprietary encryption protocol called MMTLS. The closed-source and undocumented

nature of this network protocol has also made it difficult for researchers to conduct a thorough

review of information flows from the application. In our study we had to develop our own tools to

enable us to thoroughly study the information that flows back to WeChat servers.

2

https://engage.sinch.com/
https://walkthechat.com/wechat-impact-report-2016/
https://www.wired.com/story/inside-chinas-massive-surveillance-operation/
https://www.wsj.com/articles/jailed-for-a-text-chinas-censors-are-spying-on-mobile-chat-groups-1512665007
https://www.wsj.com/articles/jailed-for-a-text-chinas-censors-are-spying-on-mobile-chat-groups-1512665007
https://www.sixthtone.com/news/1003073
https://citizenlab.ca/2015/07/tracking-censorship-on-wechat-public-accounts-platform/
https://citizenlab.ca/2017/04/we-cant-chat-709-crackdown-discussions-blocked-on-weibo-and-wechat/
https://citizenlab.ca/2018/08/cant-picture-this-an-analysis-of-image-filtering-on-wechat-moments/


Our primary research question investigates what information flows back to WeChat servers

across the WeChat ecosystem. To set the stage for this work, we first reverse engineer the

networking stack in order to develop instrumentation and tooling to study WeChat network

requests. In a followup report, we will further discuss our full understanding of the network

stack, including the custom network security measures employed by WeChat to encrypt

message data.

We then use this tooling to systematically categorize and study the composition of network

requests flowing from the WeChat client to the server in various contexts in the WeChat

ecosystem.

Background

WeChat is often described as a “super-app” not only due to the large number of features which

it has accrued since its inception, but also because it is a popular platform for third-party

applications. Originally developed as a chat app, the WeChat platform has grown to support

voice calls, “Moments” social media posts, and file sharing. Specific to China, the app also

serves as a major payment and financial transaction platform. Globally, the app also supports

Mini Programs, which are a key feature relied on by a majority of WeChat users.

Despite WeChat’s global popularity, the platform has come under repeated scrutiny for security

and privacy issues. The platform lacks end-to-end encryption of chat messages, giving Tencent

visibility into all messages sent over the platform. Users with mainland China accounts are

subjected to automated, keyword-based censorship of messages, and images they post or send

via chat message are censored according to the text contained in those images and according

to their similarity to images on an internal blacklist. While such censorship is commonly believed

to only affect users with mainland China accounts, previous work has found how even the

communications of non-China users are subjected to political surveillance and used to build up

WeChat’s Chinese political censorship system.

What are Mini Programs and why are they important?

Mini Programs are lightweight applications that can be downloaded and launched within the

3

https://en.wikipedia.org/wiki/Super-app
https://citizenlab.ca/2016/11/wechat-china-censorship-one-app-two-systems/
https://citizenlab.ca/2018/08/cant-picture-this-an-analysis-of-image-filtering-on-wechat-moments/
https://citizenlab.ca/2019/07/cant-picture-this-2-an-analysis-of-wechats-realtime-image-filtering-in-chats/
https://citizenlab.ca/2020/05/we-chat-they-watch/
https://citizenlab.ca/2020/05/we-chat-they-watch/


WeChat program, and can also sync and link with users’ WeChat account and certain

associated data, like their contact information. The breadth and variety of Mini Programs is

essentially the same as any other application ecosystem, covering e-commerce, health, public

services, gaming, and any other service you could feasibly imagine an app would be used for.

Some Mini Programs deal with particularly sensitive data, such as health apps (e.g. Tencent

Health), government service apps (e.g., the local contact tracing apps that were compulsory

during the COVID-19 pandemic), or apps that perform financial transactions on behalf of the

user (e.g., shopping apps like Pinduoduo or budgeting apps like “Small Ledger”/收款小账本).

WeChat implements Mini Programs by loading web pages into an embedded browser instance.

Mini Program developers, then, can provide WeChat a web-page-like package(e.g. a set of

packaged HTML-like, Javascript, and CSS files) to load into the embedded browser. WeChat

also injects JavaScript into the web page. Among other purposes, some of these scripts provide

a Javascript interface (under namespace “wx”). This interface allows the web-based Mini

Program access to various mobile features, like geolocation, with WeChat acting as a bridge

between the two. The interface also allows the Mini Program to access data associated with the

user’s WeChat account, such as payment information or the user’s phone number.

The Mini Program ecosystem has also undergone criticism around various privacy and security

issues. A 2020 report from CNCERT/CC found that 60 percent of the 50 banking applications

that they investigated did not encrypt any user data transmitted over the network, among a

litany of other common security issues. Another report investigated the third-party tracking

ecosystem across 52 commonly used Mini Programs, found that many shared user data with

third parties, and generally provided unsatisfactory notice and opt-outs to users.

Since the CNCERT report, WeChat has attempted to tighten user data controls within its Mini

Program ecosystem. One such example is that web requests can no longer be directly made

from the Mini Program, and instead must go through WeChat’s internal API. This way, WeChat

can enforce which third-parties are contacted during Mini Program usage, and also enforce

minimum security for network requests, in particular by ensuring that they are all encrypted

using HTTPS.

Despite the global popularity of WeChat and amount of attention to the Mini Programs

4

https://www.sixthtone.com/news/1005452
https://www.cert.org.cn/publish/main/upload/File/2020%20Annual%20Report.pdf
https://www.sixthtone.com/news/1006196
https://www.scmp.com/tech/apps-social/article/3065206/tencents-wechat-tightens-privacy-controls-third-party-apps-calls


third-party ecosystem, what types of data WeChat transmits as well as what information flows

from these third-party applications back to WeChat is understudied compared to other popular

social media ecosystems like Facebook, and other tracking ecosystems like Google. Previous

work has attempted to use automated methods to analyze the Windows desktop version of

WeChat, finding that various identifiers related to a user’s machine are transmitted to WeChat’s

servers.

Methods

In this section we explain our methods for analyzing WeChat’s data flows and tracking. Our

primary analysis method is the use of reverse engineering. In our report, we analyzed the

Android version of the app, specifically version 8.0.23 released on May 26, 2022, downloaded

from the WeChat website, and we used an account registered to a U.S. number for the analysis,

which changes the behavior of the application compared to a mainland Chinese number. Our

setup may not be comprehensive, and the full limitations are discussed in a section below.

Reverse engineering methods

In this work, we utilized both static and dynamic analysis methods, static referring to those

methods which do not involve running an analyzed application and dynamic referring to those

which do. For static analysis, we used Jadx, a popular Android decompiler, to decompile

WeChat’s Android Dex files into Java source code. We also used Ghidra and IDA Pro to

analyze the native libraries bundled with WeChat.

For dynamic analysis, we analyzed the application installed on a rooted Google Pixel 4 phone

and an emulated Android OS, using Frida to inject scripts and manipulate and export application

memory. We also performed network analysis of WeChat’s network traffic using Wireshark.

However, due to WeChat’s use of nonstandard cryptographic libraries like MMTLS, standard

network traffic analysis tools that might work with HTTPS/TLS do not work for all of WeChat’s

network activity. Our use of Frida was paramount for capturing the data and information flows

we detail in this report. These scripts are designed to intercept WeChat’s request data

immediately before WeChat sends it to its MMTLS encryption module. The Frida scripts we

used are published in the Appendix.

5

https://www.researchgate.net/publication/271502094_Examining_the_network_traffic_of_facebook_homepage_retrieval_An_end_user_perspective
https://ieeexplore.ieee.org/abstract/document/8660581
https://dl.acm.org/doi/pdf/10.1145/3193111.3193114
https://github.com/skylot/jadx
https://ghidra-sre.org/
https://hex-rays.com/ida-pro/
https://frida.re/
https://www.wireshark.org/


Using these dynamic analysis methods, we then manually simulate multiple common “user

activities” that a user may perform in practice. The discrete user activities we tested are as

follows:

● Account creation

● Account login

● Loading messages

● Sending messages

○ Sending multimedia messages, including images and video

● Loading Moments feed

● Posting Moments

○ Posting multimedia moments, including images and video

● Commenting and interacting with moments

● Mini Program usage

For each of these activities we identify the destination of all network requests made during them

and record the types of data transmitted during them. We collect data under two primary modes:

a “permissive” and “restrictive” mode. In a “permissive” mode, we grant the application all

sensitive permissions, to demonstrate to what extent permissioned APIs are relied on during

regular operation of the app.

To detect sensitive content flows, we identify various pieces of sensitive data related to the

current user. For certain fields that are user-controllable, we use identifiable strings of text. We

then attempt to find these pieces of data in WeChat’s plaintext, uncompressed transmissions.

For instance, we identified the following information to track their transmissions:

● Network carrier

● Phone number

● User’s internal WeChat ID

● OS details – Android API version

● Device details – model, brand

6



For spoofable numeric data, such as geolocation coordinates or screen size on an Android

emulator, we search for the combination of certain numbers (such as both the width and height,

or all three geocoordinates) to avoid matching false positives. For fully user-controllable fields,

we inject recognizable and descriptive names, such as “USERNAME_XXXXX” for the name of

the account. A full list of canaries and identified information used to track content flows can be

found in the Appendix.

Mini Programs

In order to study WeChat behavior during Mini Program usage, we load “WeChat Example Mini

Program,” which is a test application that can trigger various API calls. We also collect data from

five popular Mini Programs across different categories from 2021 from a sample of posts, based

on usage and search metrics, since there is no Mini Program ordering provided by WeChat [1]

[2]. The† five Mini Programs we studied were Meituan (food), Pinduoduo (online shopping), Didi

Chuxing (taxi service), Tongcheng Travel (tourism), and Kuaishou (online video).

Limitations

This investigation only looks at client behavior, and is subject to other common limitations in

privacy research that can only perform client analysis. Much of the data that is sent to WeChat

servers may be required for functionality of the application. For instance, WeChat servers can

certainly see chat messages since WeChat can censor them according to their content. We

cannot say what WeChat is doing with the data that they collect, but we can make inferences

about what is possible. Certain limited inferences about data sharing can be made based on

prior work like this report, which indicates that messages sent by non-mainland-Chinese users

are used to train censorship algorithms for mainland Chinese users. In this report, we focus on

the version of WeChat for non-mainland-Chinese users.

Our investigation was also limited due to legal and ethical constraints. It has become

increasingly difficult to obtain Chinese phone numbers for investigation due to the strict phone

number and associated government ID requirements. Therefore, we did not test on Chinese

phone numbers, which causes WeChat to behave differently. In addition, without a mainland

7

https://github.com/wechat-miniprogram
https://github.com/wechat-miniprogram
http://www.mpgcw.com/5872.html
https://zhuanlan.zhihu.com/p/459966259
https://citizenlab.ca/2020/05/we-chat-they-watch/


Chinese account, the types of interaction with certain features and Mini Programs were limited.

For instance, we did not perform financial transactions on the application.

We imposed additional constraints to limit the scope of the work. We only investigated the

Android application, we only performed the study on one Android API version (Android 32) and

a rooted Google Android Pixel device (Pixel 4), including an emulator for that same device.

Though we did not observe any operational differences in behavior between using the emulator

and a regular device, there may be downstream effects to our use of an emulator to collect

much of the data in this report.

We also only evaluated a recent version of WeChat (8.0.23 released on May 26, 2022). Testing

different versions of WeChat, the backwards-compatibility of the servers with older versions of

the application, and testing on a variety of Android operating systems with variations in API

version, are great avenues for future work.

We also acknowledge that the scope of the Mini Programs work is limited compared to the size

of the entire ecosystem, as we only take a few Mini Programs to investigate thoroughly. We

attempt to offset this by focusing on the relationship between Mini Program API calls and data

sent back to WeChat servers. A comprehensive and representative overview of the entire

ecosystem would be a great avenue for future work.

Finally, the WeChat codebase is vast. Over the years, the application has grown to cover

various features, including ones that may transmit especially sensitive data (such as linking

financial data and performing financial transactions). In this work, we do not purport to cover all

of them. In fact, our research packages our preliminary understanding of WeChat. We provide

our most accurate understanding of the codebase, but acknowledge that there exist limitations

in our methodology and the vast nature of the WeChat application.

Findings

In this section we detail our findings concerning WeChat’s tracking during regular application

usage as well as during mini-program usage. The structure of captured data can be found in the

8



Appendix.

First-party tracking on Mini Programs

The data collection observed on Mini Programs is likely in-place to enable the application

monitoring and analytics features provided by WeChat, namely, “We分析” or “WeAnalyze”.

However, from our analysis, we find that all Mini Programs are automatically enrolled into the

WeAnalyze program and data collection, and there is no reasonable way to opt-out. To put this

data collection into perspective, it would be an equivalent privacy violation if Google Play Store

automatically injected Google Analytics tracking scripts into all applications that were available

on the platform.

During regular Mini Program usage, user interactions are sent back to WeChat servers. In

addition, extremely verbose logging data is sent to WeChat servers during Mini Program usage;

we do not observe this type of logging data sent during any of our other experiments. Many of

the requests observed, especially extraneous logging and activity tracking, do not serve a

baseline functionality for the Mini Programs, instead records and tracks user behavior across

the program.

Details of tracking during Mini Program usage

The class JsApiOperateRealtimeReport (pinging endpoint /wxartrappsvr/route), send the

following data back to WeChat servers:

● appid,appversion

● page_path (i.e. the current user view)

● click data and time spent on this particular view

● networktype

● language/locale

● device information: model, OS, OS version, device brand, SDK version

● screen size

AppBrandIDKeyBatchReport (/wxausrevent/wxaappidkeybatchreport) sends a large stream of

9

https://wedata.weixin.qq.com/mp2/login


logging data, including API calls made by the Mini Program and other internal API calls made by

the host platform, to WeChat.

Finally, the class JsApiOperateWXData is also responsible for sending data back to WeChat

servers, typically containing a Javascript API name and a custom serialized JSON blob of data.

The JSON data sent in this object is primarily scoped to the functionality of the Javascript API at

hand. Some of these network requests to WeChat servers may be necessary for the type of

operation with the application; for instance, if the third-party application requests data about the

logged-in WeChat user.

Infrastructure and server locations

On testing from our vantage point in Canada, when logged out, the application primarily makes

MMTLS requests to the domain hkextshort.weixin.qq.com. Once logged in, the application

switches to using sgshort.wechat.com for MMTLS requests. Presumably, the prefixes “hk” and

“sg” intend to refer to servers located in Hong Kong and Singapore, as outlined in WeChat’s

Privacy Policy. As expected, these hostnames resolved to IP addresses owned by Tencent,

WeChat’s parent company.

Upon startup, the application sends a regular HTTP GET request to the endpoint,

http://dns.weixin.qq.com/cgi-bin/micromsg-bin/newgetdns, which is a formatted list of WeChat

server domain names and associated IP addresses. This is combined with other MMTLS

requests (for instance, we also observe MMTLS requests to /cgi-bin/micromsg-bin/getcdndns) to

resolve certain IP addresses that the client might choose from. The full contents of this endpoint

as we observed it can be found on our Github.

In this file, we can identify a number of other prefixes, including “ml”, “sh”, “sz”, in addition to the

“hk” and “sg” prefixes we observed. “sz” may stand for Shenzhen, the location of Tencent’s

headquarters. Though it was not observed in our testing, requests to “szshort.weixin.qq.com”

are commonly observed in online posts, possibly from developers located in China. This domain

is also mentioned in a test case in some of Tencent’s open-source networking code.

In general, we did not observe changes in the region prefix that was preferred by MMTLS

10

https://www.wechat.com/en/privacy_policy.html#pp_location
http://dns.weixin.qq.com/cgi-bin/micromsg-bin/newgetdns
https://blog.naaln.com/2016/03/wechat-protocol-analysis/
https://github.com/Tornaco/Thanox/issues/403
https://github.com/Tencent/mars/blob/master/mars/stn/test_cases/hostorder_test.cc


requests. However, cross-referencing from existing data and observations by other researchers,

we can conclude that the servers that are preferred by the WeChat application depends on a

combination of IP address location, especially if the user is logged out, and the registered phone

number locale (if the user is logged in).

Opportunistic permissions

WeChat makes use of some dangerous permissions (as defined by Google) , in particular

“Location” and “Files and media”, during regular operation of the application, if those

permissions are granted to the application.

In addition, a network request on opening the app contains an encrypted header containing

device serial numbers, specifically the IMEI1and IMSI2. On Android 10 devices and above,

where the API no longer permits obtaining the IMEI, a dummy string “1234567890ABCDEF” is

sent in place of the IMEI. Operating systems that do not have this protection in place would

likely send the full IMEI.

These data points demonstrate that WeChat makes opportunistic use of device access to many

types of sensitive data, which means hardening the operating system and device access to

certain permissions does restrict the amount and type of data that is available to WeChat.

However, in practice, this landscape is complicated by the fact that WeChat also manages the

permissions for its Mini Programs.

Any particular Mini Program can request an OS-level sensitive permission, such as reading

storage or accessing the user location. In order to grant any Mini Program a particular

permission, then, by design, WeChat must also request that permission from the operating

system. There is no way to enable a particular permission for a Mini Program but not for the

host WeChat application.

—---------------------------------------
1International Mobile Equipment Identity. This is an unique identifier for every phone

.2International Mobile Subscriber Identity. This is an unique identifier for every SIM card.

11

https://developer.android.com/guide/topics/permissions/overview#runtime
https://citizenlab.ca/2015/05/the-many-identifiers-in-our-pocket-a-primer-on-mobile-privacy-and-security/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/authorize.html


WeChat’s Mini Program ecosystem is often compared to an application ecosystem for a

particular operating system; in this analogy, WeChat, or other super-apps, are akin to an

operating system. OS-level permissioning systems have been studied at length in the past, and

there are an increasing number of studies on the misuse of permission boundaries within

super-apps.

Tracking during regular application usage

Here, we describe notable personal data tracking during general/regular application

usage, outside the scope of what may be necessary for the operation of the WeChat

application.

First, many WeChat MMTLS request includes, as a header:

● Platform data, specifically OS API version

● User’s internal WeChat UID

Data description Example

Operating system details sdk_gphone64_arm64arm64-v8a

WeChat internal UIN a 10-digit number

WeChat internal UID (“MMGUID”) a 15 character hex

string"A9543d226cb39f0f_1683146442889"

API version android-32

12

https://arxiv.org/pdf/2205.15202.pdf


Table TKTK:

When the user opens the WeChat application, or logs into the WeChat application, a

comprehensive device report is sent, including:

Data description Example

Phone number Our U.S. testing phone number

IMEI 1234567890ABCDEF (for Android 10+)

Operating system details sdk_gphone64_arm64arm64-v8a

Manufacturer Google

Major OS release version 12 (Android 12)

Minor OS release version 8015633

Build display name sdk_gphone64_arm64 12 S2B2.211203.006 8015633

Network carrier T-Mobile

Table TKTK:

WeChat sends various batch reports that send application usage and monitoring data, as well

as location data, if particular permissions are enabled by the user. A class called “CliReportKV”

that collects and sends a large series of operational messages that are collected over a large

period of time, and “NetTypeReporter” sends networking and location data at a regular interval

back to WeChat servers.

Finally, we find that when running with all permissions enabled, WeChat accesses the location

API on any regular startup of the application, while logged in. Enabling location permissions

automatically enables the “People Nearby” feature, which broadcasts your location so you can

identify and interact with WeChat users nearby.

13

https://developer.android.com/reference/android/os/Build#DISPLAY


Discussion

Privacy policies and Weixin as “third party”

WeChat has a different privacy policy for its users, depending on whether the account is

attached to a mainland Chinese mobile number. The WeChat privacy policy refers to accounts

with mainland Chinese mobile numbers as “Weixin accounts,” which are covered under a

separate privacy policy. “Weixin” is a direct transliteration of WeChat’s Chinese name. We refer

to these, respectively, as the WeChat privacy policy and the Weixin privacy policy.

Within the WeChat privacy policy, Weixin is referred to as a third party. The WeChat privacy

policy also defers to the Weixin privacy policy when it comes to first-party data collection on

various features it designates as “operated by Weixin”. In general, we note that various key

features and services, such as Advanced Search and Channels, that tend to collect more

user

data, are all considered “third party services operated by Weixin” according to WeChat’s privacy

policy. This separation between WeChat and Weixin features is not communicated within the

application itself. Unlike other popular apps like Tiktok, and its Chinese counterpart, Douyin,

network data for both “WeChat services” and “Weixin services” all go to the same server, which

seems to be determined by the user’s IP address or phone number.

We identify additional privacy disclosure issues under this WeChat and Weixin dichotomy, and

inconsistencies between the wording of these privacy policies to the observed behavior of the

app.

First, the WeChat privacy policy states that it will only share data with Weixin as necessary.

However, app usage tracking for analytics is not necessary for the operation of the platform. In

addition, we note that prior research found that non-mainland-Chinese user data was being

used to train censorship algorithms for mainland-Chinese users.

Second, the WeChat privacy policy implies that only third-party privacy practices and policies

govern Mini Programs, when in fact, WeChat/Weixin also collects lots of data. In fact, Mini

14

https://www.wechat.com/en/privacy_policy.html
https://weixin.qq.com/cgi-bin/readtemplate?lang=en_US&t=weixin_agreement&s=privacy&cc=CN&head=true
https://weixin.qq.com/cgi-bin/readtemplate?lang=en_US&t=weixin_agreement&s=privacy&cc=CN&head=true
https://www.wechat.com/tpl/oversea/new/page/weixin_features/index?lang=en
https://citizenlab.ca/2020/05/we-chat-they-watch/


Programs are not listed as subject to the Weixin privacy policy, and instead listed under “Weixin

Open Platform,” which are only governed by third-party privacy policies.

The Weixin privacy policy does mention that when using “Weixin’s Mini Programs,” they will

collect data related to “logging in to, browsing, and using Mini Programs.” The wording of this

translation is vague as to whether it refers to Mini Programs directly operated by Weixin, or all

Mini Programs available on the Weixin platform. There is no opt-out for this feature on either the

developer (third party) or the user’s behalf.

Recommendations

From our discussions above, we make the following recommendations to the platform and

platform users to improve user privacy.

Recommendations for WeChat:

● Remove forced enrollment of Mini Program analysis and tracking features, and change to an

opt-in model. Currently, both developers and users are automatically enrolled into the We分析

tracking program with little notification. There is currently no way to opt out of the program.

● Enact a more fine-grained permissioning model. Certain Mini Programs might need

permissions, but users should have some guarantee that the host platform cannot abuse those

permissions if granted.

● Remove the delineation between “Weixin” vs “WeChat” services in the Privacy Policy. Despite

that the Privacy Policy claims certain core features of “WeChat” are run by a third-party named

“Weixin,” there is no such delineation between “WeChat” and “Weixin” services in the regular

operation of the application.

● Disclose WeChat’s first-party collection of Mini Program user data in the WeChat Privacy
Policy.

● Allow users to opt-out of analytics tracking during usage of “Weixin” services. Users should be
able to opt-out of tracking that is not necessary to the function of the app.

15

https://www.wechat.com/tpl/oversea/new/page/weixin_features/index?lang=en


Recommendations for users:

● Avoid features delineated as “Weixin” services if possible. We note that many core “Weixin”

services (such as Search, Channels) as delineated by the Privacy Policy perform more tracking

than core “WeChat” services.

● Use stricter permissions. In modern versions of Android, it is possible to restrict certain

permissions (like location access) to when the application asks for it. Given the opportunistic use

of enabled permissions by the application and the lack of a more fine-grained permissioning

model between Mini Programs and the host WeChat platform, we recommend locking down

application permissions.

● Update your device’s OS regularly for security features. Many new security features on

modern versions of Android are working correctly to enforce permission boundaries and limit

certain types of identifiers that are available to the application (such as IMEI). We recommend

using an OS that has all of these features in place, and regularly updating for additional security

features down the line.

We note that these improvements are incremental at best, and recommendations for users

should be taken in context with a particular threat model. For users with certain high risk

profiles, no amount of these adjustments will make WeChat completely safe to use. While we

would generally suggest using alternative messaging applications if possible, we understand

that most users use WeChat out of necessity, and that using more secure messaging

applications can itself be a risk factor depending on the particular situation.

Acknowledgments

We would like to thank TKTK

Appendix

16



Program components related to network requests

The contents of each network message we captured included a serialized Protobuf object and a

request URI that is internal to WeChat operation. From the deserialized, unencrypted data

contents, associated metadata, and static analysis of code paths around these requests, we can

infer the purpose and usage of this particular data.

WeChat internally provides a unified Java API for components to make network requests. Each

API endpoint is represented in a Java class (which we refer to as “API class”) that is extended

from the NetSceneBase class.

Each API class defines the following important properties:

● Internal URI, usually starts with /cgi-bin/.

● Request type, usually a 3 digit integer.

The most important API interfaces during request making are:

● NetSceneQueue.checkAndRun(): Starting a request of a specific API class. This function

is a fixed implementation in NetSceneBase. This function is invoked from external

components that need to make network requests.

● NetSceneBase.doScene() : Filling data fields. Implemented in API class. ●

GYNetEndI.onGYNetEnd() : Callback when response is received. Implemented in the

API class.

In the rest of this section, we illustrate the structure outlined above with a real API class:

NetSceneEncryptCheckResUpdate. Note that most of the symbol names are given by us based

on our understanding of its purpose.

17

https://github.com/protocolbuffers/protobuf


Figure TKTK:

In NetSceneEncryptCheckResUpdate, the request type is either 784 or 722 depending on the

value of a configuration EcdhMgr.auth_info_prefs_use_new_ecdh.

NetSceneEncryptCheckResUpdate’s request URI is defined in its subclass

EncryptCheckResUpdateRR. The URI also depends on the configuration value

EcdhMgr.auth_info_prefs_use_new_ecdh.

Figure TKTK:

NetSceneEncryptCheckResUpdate inherits most of its properties and methods from

AbstractNetsceneCheckresUpdate, which implements doScene.

18



Figure TKTK:

AbstractNetsceneCheckresUpdate also implements onGYNetEnd.

19



Figure TKTK:

Finally, when is this request sent? We see NetSceneQueue.checkAndRun() called with

NetSceneEncryptCheckResUpdate only in a simple wrapper within the class itself:

Figure TKTK:

The wrapper checkandrun() is called from com.tencent.mm.ui.LauncherUI.onCreate(), which is

called during the application startup. This fits our traffic observation that API request

/cgi-bin/micromsg-bin/secencryptcheckresupdate gets sent during application startup.

Frida script

// introduce the components that our frida script hooks into

// explain why our frida script can intercept plaintext requests

20



Table of identified network requests and associated data

Application startup (logged out)

/cgi-bin/micromsg-bin/secencryptcheckresupdate

Account login

/cgi-bin/micromsg-bin/bindopmobileforreg

/cgi-bin/micromsg-bin/secmanualauth

/cgi-bin/micromsg-bin/getcdndns

/cgi-bin/micromsg-bin/checkresupdate

/cgi-bin/mmbiz-bin/usrmsg/getserviceapplist

/cgi-bin/mmexptappsvr-bin/getexptconfig

/cgi-bin/mmfddataappsvr/getexptappconfig

/cgi-bin/micromsg-bin/getopenimresource

/cgi-bin/micromsg-bin/textstatusgetuserpermission

/cgi-bin/micromsg-bin/textstatusgeticonconfig

/cgi-bin/micromsg-bin/prconfig

/cgi-bin/micromsg-bin/finderinit

/cgi-bin/micromsg-bin/findersync

/cgi-bin/mmbiz-bin/wxaapp/getwxausagerecord

/cgi-bin/mmbiz-bin/wxaapp/getpubliclibinfo

/cgi-bin/micromsg-bin/getprofile

/cgi-bin/micromsg-bin/getforcepush

/cgi-bin/micromsg-bin/oplog

/cgi-bin/micromsg-bin/getboundharddevices

/cgi-bin/micromsg-bin/get_user_bind_iot_device_info

/cgi-bin/mmbiz-bin/wxausrevent/getservicenotifyoptions

/cgi-bin/micromsg-bin/newinit

/cgi-bin/micromsg-bin/reportclientcheck

21



Application startup (logged in)

/cgi-bin/micromsg-bin/textstatusgeticonconfig

/cgi-bin/micromsg-bin/androidfcmreg

/cgi-bin/micromsg-bin/checkresupdate

/cgi-bin/micromsg-bin/secautoauth

/cgi-bin/micromsg-bin/finderinit

/cgi-bin/micromsg-bin/findersync

/cgi-bin/micromsg-bin/getcdndns

/cgi-bin/micromsg-bin/statusnotify

/cgi-bin/micromsg-bin/newsync

Mini Program Open

/cgi-bin/mmbiz-bin/js-operatewxdata

/cgi-bin/micromsg-bin/newreportkvcomm

/cgi-bin/mmbiz-bin/wxausrevent/wxaappidkeybatchreport

/cgi-bin/mmbiz-bin/wxartrappsvr/route

Mini Program Download

22


